PERSiMED: PERSian Intelligent MEDical Document Reader:A Smart NLP-based Framework for Persian Medical Documents

سال انتشار: 1404
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 34

فایل این مقاله در 17 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

INSDEV32_110

تاریخ نمایه سازی: 12 دی 1404

چکیده مقاله:

The healthcare industry generates vast amounts of textual data in the form of medical records, prescriptions, and insurance claims. This paper introduces PERSiMED (PERSian Intelligent MEDical document reader), a novel deep learning-based framework designed to automate the extraction, processing, and semantic analysis of Persian medical documents. The proposed system employs a sophisticated pipeline combining Convolutional Neural Networks (CNN) for document preprocessing and Vision-Language (VL) models for intelligent content extraction. PERSiMED addresses critical pain points in the health insurance industry, including fraud detection, claims processing automation, privacy-preserving data management, and longitudinal health record creation. Our framework achieves end-to-end automation from image input through auto-rotation, orientation correction, boundary detection, to semantic annotation and structured HTML output, enabling seamless database integration. This research demonstrates how modern AI techniques can be effectively adapted to handle the unique challenges of Mixed English and Persian script medical documentation.