Graph Attention Networks and Transformers in Edge Computing: A Survey of Applications, Mechanisms, and Integrations

سال انتشار: 1404
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 24

فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

AIMCNFE02_027

تاریخ نمایه سازی: 12 دی 1404

چکیده مقاله:

Graph Attention Networks (GAT) and Transformer-based architectures have become cornerstone technologies for modeling irregular spatial relationships and long-range temporal dependencies in resource-constrained edge environments. This survey systematically reviews the evolution, core mechanisms, edge-specific adaptations, and integration strategies of GAT and Transformer models. Through a comprehensive analysis of ۳۸ recent studies, the paper classifies applications across anomaly detection, resource allocation, QoE prediction, and intelligent transportation while highlighting performance gains, computational trade-offs, and scalability challenges. Special emphasis is placed on emerging hybrid GAT-Transformer frameworks that simultaneously capture dynamic network topology and temporal evolution, offering a promising pathway toward real-time edge intelligence in ۶G, MEC, and beyond.

نویسندگان

Moozhan Esfandiary

Department of Computer Engineering, CT. T, Faculty of Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran