Metaheuristic-Driven Optimization of Deep Learning Models for Lung Cancer Detection in CT Imaging: Focus on Whale Optimization Algorithm and Its Variants – A Comprehensive ۲۰۲۵ Review
سال انتشار: 1404
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 57
فایل این مقاله در 11 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
AIMCNFE02_025
تاریخ نمایه سازی: 12 دی 1404
چکیده مقاله:
Lung cancer diagnosis via computed tomography (CT) imaging demands high-precision deep learning models to handle the intricacies of nodule detection, segmentation, and classification. Metaheuristic algorithms, particularly the Whale Optimization Algorithm (WOA) and its enhanced variants, have gained prominence for optimizing hyper-parameters in convolutional neural networks (CNNs) and graph neural networks (GNNs), addressing issues like local optima trapping and computational inefficiency. This comprehensive ۲۰۲۵ review synthesizes ۹۸ studies from ۲۰۱۶ to ۲۰۲۵, emphasizing WOA's bio-inspired mechanisms, hybrid integrations, and performance in lung cancer tasks. We delineate popular metaheuristics in healthcare, WOA principles, CNN/GNN synergies, and comparative benchmarks, while pinpointing limitations in convergence, scalability, and clinical validation. Recommendations for hybrid optimizers and federated learning integrations are proposed to advance real-world deployability.
کلیدواژه ها:
نویسندگان
Mahsa yaghoobi
Department of Computer Engineering, Ard.C., Islamic Azad University, Ardabil, Iran