A Data-Driven Evaluation of Ceftazidime Utilization and Its Clinical Implications: Insights Toward AI-Assisted Antibiotic Stewardship
سال انتشار: 1404
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 21
متن کامل این مقاله منتشر نشده است و فقط به صورت چکیده یا چکیده مبسوط در پایگاه موجود می باشد.
توضیح: معمولا کلیه مقالاتی که کمتر از ۵ صفحه باشند در پایگاه سیویلیکا اصل مقاله (فول تکست) محسوب نمی شوند و فقط کاربران عضو بدون کسر اعتبار می توانند فایل آنها را دریافت نمایند.
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
AIMCNFE02_015
تاریخ نمایه سازی: 12 دی 1404
چکیده مقاله:
Ceftazidime is a key third-generation cephalosporin broadly utilized for managing severe gram-negative infections, particularly in hospitalized patients. Understanding real-world prescribing behaviors and associated clinical outcomes is essential for strengthening antimicrobial stewardship and informing evidence-based therapeutic decisions. This study provides a rigorous, data-driven assessment of ceftazidime utilization within a tertiary-care setting and highlights parameters that may guide future AI-supported optimization strategies. A six-month cross-sectional evaluation was conducted at Imam Khomeini Hospital, Ardabil. Demographic data, indications for therapy, dosing patterns, treatment duration, microbiological documentation, laboratory indices, and clinical endpoints were systematically extracted from patient records. Both descriptive statistics and clinically relevant comparative analyses were applied to assess appropriateness of therapy and treatment outcomes. Considerable heterogeneity was observed in prescribing patterns, with a substantial proportion of regimens initiated empirically without culture confirmation. Suboptimal dosing and prolonged treatment courses were detected in several cases. Clinical response varied across indications, and a number of patients experienced treatment-related adverse events. The collected variables represent meaningful inputs for potential predictive algorithms in antimicrobial stewardship. The findings underscore the need for more judicious ceftazidime prescribing in hospitalized populations. The dataset offers a valuable foundation for developing AI-assisted decision-support tools aimed at enhancing antibiotic optimization and improving clinical outcomes.
کلیدواژه ها:
نویسندگان
Reza Rastgoo
Ardabil University of Medical Sciences, Ardabil, Iran
Shaqayeq nekooie
Fuel Cell Laboratory, Department of Chemistry, Faculty of Science, Yasouj University, Yasouj, Iran