A Comprehensive Review of Machine Learning and Deep Learning Approaches for Early Detection of Diabetes Mellitus Using Gait Analysis and Plantar Pressure Data

سال انتشار: 1404
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 23

فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

AIMCNFE02_008

تاریخ نمایه سازی: 12 دی 1404

چکیده مقاله:

Diabetes Mellitus (DM) represents a major global health challenge, with early detection being crucial to prevent severe complications such as diabetic foot ulcers (DFUs) and neuropathy. Traditional diagnostic methods often rely on invasive tests, but recent advancements in non-invasive techniques, particularly gait analysis and plantar pressure assessment, offer promising alternatives. This systematic review examines the application of machine learning (ML) and deep learning (DL) models in processing biomechanical data from gait and plantar pressure sensors for early DM detection. We categorize data acquisition methods, evaluate key ML/DL architectures, analyze performance metrics, and identify gaps in current research. Drawing from ۳۰ selected studies spanning ۲۰۱۶ to ۲۰۲۵, the review highlights how these approaches achieve accuracies up to ۹۸% while addressing challenges like data scarcity and model generalization. Recommendations for future work emphasize hybrid models and wearable integration for real-time monitoring.

نویسندگان

Vida Shiri

Department of Computer Engineering, Ard.C., Islamic Azad University, Ardabil, Iran

Zeynab Rezaii

Department of Computer Engineering, Ard.C., Islamic Azad University, Ardabil, Iran