Visualizing PPE Violation Risks in BIM: A Computer Vision-Based Spatial Approach for Construction Safety

سال انتشار: 1405
نوع سند: مقاله ژورنالی
زبان: فارسی
مشاهده: 31

فایل این مقاله در 21 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JSEC-13-1_001

تاریخ نمایه سازی: 6 دی 1404

چکیده مقاله:

Ensuring worker safety is a critical priority in the construction industry. While Building Information Modeling (BIM) has advanced project management and visualization, its role in spatially-aware safety analysis, particularly for Personal Protective Equipment (PPE) violations, remains limited. Existing approaches often fail to capture insights into high-risk zones. This study proposes a framework for spatial risk categorization within BIM models, based on the frequency of PPE violations. Using a computer vision approach with the You Only Look Once (YOLO) model, PPE infractions involving hard hats and safety vests are automatically detected from site imagery and aggregated per spatial element. These violations are linked to the Revit model, incorporating camera positions to visualize high-risk zones as color gradients within the model. The evaluation demonstrates strong detection accuracy, with mean average precision (mAP) values of ۰.۸۲۳ for “Person,” ۰.۸۱۹ for “Hat,” and ۰.۵۶۷ for “Vest,” yielding an overall mAP of ۰.۷۴۶. By highlighting spatial zones with elevated risk, the framework supports targeted deployment of safety measures where needed. It also enables tailored training programs for subcontractor crews in these zones, ensuring context-specific and effective safety management. This innovative approach introduces a new data layer to coordination models, derived from real-world safety performance, enabling stakeholders to spatially identify areas with high PPE non-compliance. This enables proactive monitoring and allows for the timely deployment of safety measures. Informed decision-making is thereby supported, leading to more effective safety interventions and a reduction in on-site hazards. The study's finding aligns with the perspectives of safety experts, validating a practical approach to hazard reduction.

کلیدواژه ها:

Building Information Modeling (BIM) ، Construction safety ، computer vision ، Personal Protective Equipment (PPE) ، You Only Look Once (YOLO )

نویسندگان

mohammadhossein tamanaeifar

PhD Candidate, Department of Civil & Environmental Engineering, Amirkabir University of Technology, Tehran, Iran

Vahid Shahhosseini

Associate Professor, Department of Civil & Environmental Engineering, Amirkabir University of Technology, Tehran, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Employment by major industry sector : U.S. Bureau of Labor Statistics, ...
  • Number and rate of fatal work injuries, by private industry ...
  • Number and rate of fatal work injuries, by private industry ...
  • W. Fang, P.E.D. Love, H. Luo, L. Ding, Computer vision ...
  • S. Rasouli, Y. Alipouri, S. Chamanzad, Smart Personal Protective Equipment ...
  • W. Fang, L. Ding, H. Luo, P.E.D. Love, Falls from ...
  • A.S. Kulinan, M. Park, P.P.W. Aung, G. Cha, S. Park, ...
  • H. Wu, B. Zhong, H. Li, P. Love, X. Pan, ...
  • J. Seo, S. Han, S. Lee, H. Kim, Computer vision ...
  • X. Xu, L. Ma, L. Ding, A framework for BIM-enabled ...
  • H. Malekitabar, A. Ardeshir, M.H. Sebt, R. Stouffs, Construction safety ...
  • A.B.K. Rabbi, I. Jeelani, AI integration in construction safety: Current ...
  • Q. Fang, H. Li, X. Luo, L. Ding, H. Luo, ...
  • Q. Fang, H. Li, X. Luo, L. Ding, H. Luo, ...
  • B.E. Mneymneh, M. Abbas, H. Khoury, Vision-Based Framework for Intelligent ...
  • J. Wu, N. Cai, W. Chen, H. Wang, G. Wang, ...
  • A. Jalil Al-Bayati, A.T. Rener, M.P. Listello, M. Mohamed, PPE ...
  • N.D. Nath, A.H. Behzadan, S.G. Paal, Deep learning for site ...
  • X. Yang, Y. Yu, S. Shirowzhan, S. Sepasgozer, H. Li, ...
  • S. Tang, D. Roberts, M. Golparvar-Fard, Human-object interaction recognition for ...
  • N. Khan, S. Farhan, A. Zaidi, A. Sabir, M.S. Abbas, ...
  • J. Zhao, E. Obonyo, Convolutional long short-term memory model for ...
  • W. Liu, Q. Meng, Z. Li, X. Hu, Applications of ...
  • R. Akram, M.J. Thaheem, S. Khan, A.R. Nasir, A. Maqsoom, ...
  • A. Rashidi Nasab, H. Malekitabar, H. Elzarka, A. Nekouvaght Tak, ...
  • R. Chahrour, M.A. Hafeez, A.M. Ahmad, H.I. Sulieman, H. Dawood, ...
  • M.S. Dashti, M. RezaZadeh, M. Khanzadi, H. Taghaddos, Integrated BIM-based ...
  • D. Kim, T. Yoo, S.V.T. Tran, D. Lee, C. Park, ...
  • K. Kim, Y. Cho, S. Zhang, Integrating work sequences and ...
  • S.V.T. Tran, N. Khan, D. Lee, C. Park, A Hazard ...
  • A.N. Tak, H. Taghaddos, A. Mousaei, A. Bolourani, U. Hermann, ...
  • A. Salzano, S. Cascone, E.P. Zitiello, M. Nicolella, Construction Safety ...
  • Y. Lu, P. Gong, Y. Tang, S. Sun, Q. Li, ...
  • M.H. Tamanaeifar, V. Shahhosseini, Automated fall hazard analysis in the ...
  • M. Dadashi Haji, B. Behnam, M.H. Sebt, A. Ardeshir, A. ...
  • M. Dadashi Haji, B. Behnam, An automated BIM and system ...
  • J.D. Nunez-Morales, S.H. Hsu, A. Ibrahim, M. Golparvar-Fard, New Metrics ...
  • A. Pal, J.J. Lin, S.H. Hsieh, M. Golparvar-Fard, Automated vision-based ...
  • A.S. Kulinan, M. Park, P.P.W. Aung, G. Cha, S. Park, ...
  • R. Khanam, M. Hussain, YOLOv۱۱: An Overview of the Key ...
  • C.-Y. Wang, A. Bochkovskiy, H.-Y.M. Liao, YOLOv۷: Trainable bag-of-freebies sets ...
  • J. Wu, N. Cai, W. Chen, H. Wang, G. Wang, ...
  • نمایش کامل مراجع