A Novel Fault Prediction Technique for Oil-Immersed Transformers Based on Advanced Gradient Boosting and Particle Swarm Optimization (PSO)
محل انتشار: مجله هوش مصنوعی و داده کاوی، دوره: 14، شماره: 1
سال انتشار: 1405
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 3
فایل این مقاله در 12 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JADM-14-1_003
تاریخ نمایه سازی: 6 دی 1404
چکیده مقاله:
Fault prediction in power transformers is pivotal for safeguarding operational reliability and reducing system disruptions. Leveraging dissolved gas analysis (DGA) data, AI‑driven techniques have recently been employed to enhance predictive performance. This paper introduces a novel machine-learning framework that integrates Hist Gradient Boosting (HGB) with a metaheuristic Particle Swarm Optimization (PSO) algorithm for hyperparameter tuning, thereby guaranteeing classifier robustness. The proposed method underwent a two‑stage evaluation: first, Gradient Boosting (GB), Extreme Gradient Boosting (XGBoost), and HGB were benchmarked, revealing HGB as the most effective method; second, PSO was applied to optimize HGB’s hyperparameters, yielding further performance improvements. Experimental results demonstrate that the hybrid HGB‑PSO model achieves an accuracy of ۹۷.۸۵ %, precision of ۹۸.۹۰ %, recall of ۹۷.۳۳ %, and an F۱‑score of ۹۸.۹۹ %. All simulations and comparative analyses against state‑of‑the‑art methods were implemented in Python, and confusion‑matrix analysis was employed to assess predictive performance comprehensively. These findings demonstrate that the hybrid HGB‑PSO method achieves superior accuracy and robustness in transformer fault prediction.
کلیدواژه ها:
نویسندگان
Elahe Moradi
Department of Electrical Engineering, YI.C., Islamic Azad University, Tehran, Iran.
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :