A Hybrid Approach for Brain Tumor Classification: Enhancing MRI-Based Diagnosis with CNN-Transformer Synergy

سال انتشار: 1405
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 4

فایل این مقاله در 14 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JADM-14-1_004

تاریخ نمایه سازی: 6 دی 1404

چکیده مقاله:

Brain tumors are among the most life-threatening neurological conditions, requiring precise and early diagnosis for effective treatment planning. Traditional deep learning models, such as Convolutional Neural Networks (CNNs) and ResNet-based architectures, have demonstrated promising results in brain tumor classification. However, these models often struggle to capture long-range dependencies within MRI images, which are crucial for accurate classification. To overcome this limitation, we propose a Hybrid CNN-ViT model, combining the strengths of Vision Transformers (ViT) and CNNs to achieve high-precision brain tumor classification. The CNN component effectively extracts local spatial features, while the ViT module captures global contextual relationships within MRI scans. The model is evaluated on a four-class dataset of Glioma, Meningioma, Pituitary tumors, and non-tumor images, achieving an impressive accuracy of ۹۸.۳۷%, surpassing conventional CNN-based methods. By leveraging transfer learning, the approach enhances classification performance while reducing reliance on large-scale labeled datasets. The proposed Hybrid CNN-ViT model offers a scalable, robust, and efficient solution for real-world neuro-oncological diagnostics, significantly improving the accuracy of MRI-based brain tumor detection.

نویسندگان

Samira Mavaddati

Electronic Department, Faculty of Engineering and Technology, University of Mazandaran, Babolsar, Iran.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • R. Kaifi, “A Review of Recent Advances in Brain Tumor ...
  • M. Toğaçar, B. Ergen, and Z. Cömert, “BrainMRNet: Brain tumor ...
  • K. V. Chaithanyadas and G. R. G. King, “Brain tumor ...
  • U. Aeman, M. Kaleem, M. Sarwar, M. Azhar, et al., ...
  • D. Jafarkhah Seighalani, M. Yazdi, and M. Faghihi, “Brain Tumor ...
  • Z. Khazaei, M. Langarizadeh, and M. E. Shiri Ahmad Abadi, ...
  • A. Najaf-Zadeh and H. R. Ghaffari, “A Two-Dimensional Convolutional Neural ...
  • H. El Hamdaoui, A. Benfares, S. Boujraf, et al., “High ...
  • M. A. Khan, I. Ashraf, M. Alhaisoni, et al., “Multimodal ...
  • D. Filatov and H. Yar, “Brain tumor diagnosis and classification ...
  • A. A. Akinyelu, F. Zaccagna, J. T. Grist, M. Castelli, ...
  • H. Kibriya, R. Amin, A. H. Alshehri, M. Masood, S. ...
  • Z. Al-Azzwi and A. Nazarov, “Brain Tumor Classification based on ...
  • S. Deepak and P. Ameer, “Brain tumor classification using deep ...
  • R. Jain, N. Jain, A. Aggarwal, and D. J. Hemanth, ...
  • Z. N. K. Swati, Q. Zhao, M. Kabir, F. Ali, ...
  • A. Veeramuthu et al., “MRI Brain Tumor Image Classification Using ...
  • P. Gao et al., “Development and validation of a deep ...
  • A. M. Alqudah et al., “Brain tumor classification using deep ...
  • R. Sankaranarayanan et al., “Brain tumor detection and classification using ...
  • T. S. Kumar et al., “Brain Tumor Classification with Inception ...
  • S. K. Mathivanan et al., “Employing deep learning and transfer ...
  • S. Saeedi et al., “MRI-based brain tumor detection using convolutional ...
  • M. I. Mahmud, M. Mamun, and A. Abdelgawad, “A deep ...
  • M. S. Ullah et al., “Multimodal brain tumor segmentation and ...
  • Y. Zeng et al., “Enhanced multimodal brain tumor classification in ...
  • J. Wang et al., “RanMerFormer: Randomized vision transformer with token ...
  • A. Al-Hamza and Khawla, “ViT-BT: Improving MRI brain tumor classification ...
  • Brain Tumor Dataset. https://figshare.com/articles/brain_tumor_dataset/۱۵۱۲۴۲۷ ...
  • Y. Zhou et al., “Forecasting emerging technologies using data augmentation ...
  • Z. Liu et al., “Automatic diagnosis of fungal keratitis using ...
  • Z. Mushtaq, S. F. Su, and Q. V. Tran, “Spectral ...
  • M. Sajjad et al., “Multi-grade brain tumor classification using deep ...
  • Q. Xiao et al., “Deep learning-based ECG arrhythmia classification: a ...
  • X. Li et al., “Automatic heartbeat classification using S-shaped reconstruction ...
  • Z. Zhong, L. Zheng, G. KangYang, and S. Li, “Random ...
  • D. Zhang, S. Yang, X. Yuan, and P. Zhang, “Interpretable ...
  • R. Aniruddh et al., “Data augmentation for electrocardiograms,” in Conf. ...
  • M. Gao, D. Qi, H. Mu, and J. Chen, “A ...
  • K. He, X. Zhang, S. Ren, and J. Sun, “Deep ...
  • S. Mavaddati, “Classification of brain tumor using model learning based ...
  • M. Wu, Y. Lu, W. Yang, and S. Y. Wong, ...
  • M. F. Moller, “A scaled conjugate gradient algorithm for fast ...
  • Mavaddati, S., & Razavi, M. (۲۰۲۴). A CNN-LSTM-based approach for ...
  • J. Demsar, “Statistical comparisons of classifiers over multiple data sets,” ...
  • D. J. Sheskin, Handbook of Parametric and Nonparametric Statistical Procedures, ...
  • نمایش کامل مراجع