A Hybrid Approach to Stock Market Forecasting with LSTM, Modified Complex Variational Mode Decomposition, and Secretary Bird Optimization Algorithm

سال انتشار: 1405
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 41

فایل این مقاله در 21 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JADM-14-1_009

تاریخ نمایه سازی: 6 دی 1404

چکیده مقاله:

Accurate and reliable stock price prediction is both a formidable and essential task in financial markets, requiring the use of advanced techniques. This paper presents an innovative approach that integrates Long Short-Term Memory (LSTM) networks with Modified Complex Variational Mode Decomposition (MCVMD) for preprocessing and the Secretary Bird Optimization Algorithm (SBOA) for hyperparameter optimization. In the preprocessing phase, MCVMD decomposes stock price time series into intrinsic mode functions, effectively capturing complex patterns and reducing noise. To enhance predictive performance, SBOA optimizes both the hyperparameters of the LSTM network and the decomposition parameters of MCVMD. The proposed methodology is evaluated on datasets from six companies: Ferrari NV (RACE) and Intesa Sanpaolo (ISP) from Italy, Amadeus IT (AMA) and Repsol (REP) from Spain, and Hitachi Ltd (۶۵۰۱) and Chugai Pharmaceutical Co., Ltd. (۴۵۱۹) from Japan. Results show that the LSTM-MCVMD-SBOA model achieves lower error values compared with conventional benchmarks including ARIMA-GARCH, vanilla LSTM, Long Short-Term Memory-Particle Swarm Optimization (LSTM-PSO), and Long Short-Term Memory-Sine Cosine Algorithm (LSTM-SCA). Compared with these alternatives, SBOA was selected because of its superior balance between exploration and exploitation, inspired by secretary bird hunting and evasion behavior, which enables efficient search in complex optimization landscapes. Overall, the proposed model demonstrates significantly improved predictive accuracy over conventional methods, highlighting the efficacy of combining advanced decomposition with nature-inspired optimization for stock market forecasting.

نویسندگان

Homa Mehtarizadeh

Department of Applied Mathematics, Shahid Bahonar University of Kerman.

Najme Mansouri

Department of Applied Mathematics, Shahid Bahonar University of Kerman.

Behnam Mohammad Hasani Zade

Department of Applied Mathematics, Shahid Bahonar University of Kerman.

Mohammad Mehdi Hosseini

Department of Applied Mathematics, Shahid Bahonar University of Kerman.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • S. Hochreiter, (۱۹۹۷). Long Short-term Memory. Neural Computation MIT-Press.[۲] S. Siami-Namini, ...
  • S. M. Ebrahimi, & M. J. Hemmati, (۲۰۲۳). Design optimization ...
  • Y. Guo, S. Han, C., Li, Y., Yin, X., & ...
  • نمایش کامل مراجع