A numerical study of sub-grid scale stresses in a turbulent channel flow using deep learning

سال انتشار: 1404
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 46

فایل این مقاله در 6 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

ISME33_415

تاریخ نمایه سازی: 2 دی 1404

چکیده مقاله:

Multilayer perceptrons (MLPs), a type of fully connected neural network (FCNN), have been developed to model subgrid-scale (SGS) stress in a turbulent channel flow. The MLP-based SGS model is trained using filtered data with a top-hat filter of size applied at a Reynolds number of and a friction Reynolds number of. In this study, we perform an a priori analysis of a data-driven approach for SGS modeling in a three-dimensional turbulent channel flow. The FCNN model employs resolved flow statistics, including filtered velocity gradients and wall distance, to estimate SGS-stresses. Our data-driven closure model is based on localized learning and utilizes an FCNN architecture with a point-to-point mapping framework. In an a priori test, the model achieved a correlation coefficient exceeding ۹۵% for most predictions, except for and, which attained slightly lower values of ۸۶% and ۸۷%, respectively, compared to the true SGS stresses. Finally, we discussed potential strategies for improving prediction accuracy and overall performance.

نویسندگان

Mohammadreza Azarshab

Mechanical Engineering Department, Iran University of Science and Technology, Tehran

Zeinab Pouransari

Mechanical Engineering Department, Iran University of Science and Technology, Tehran