A numerical study of sub-grid scale stresses in a turbulent channel flow using deep learning
سال انتشار: 1404
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 46
فایل این مقاله در 6 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
ISME33_415
تاریخ نمایه سازی: 2 دی 1404
چکیده مقاله:
Multilayer perceptrons (MLPs), a type of fully connected neural network (FCNN), have been developed to model subgrid-scale (SGS) stress in a turbulent channel flow. The MLP-based SGS model is trained using filtered data with a top-hat filter of size applied at a Reynolds number of and a friction Reynolds number of. In this study, we perform an a priori analysis of a data-driven approach for SGS modeling in a three-dimensional turbulent channel flow. The FCNN model employs resolved flow statistics, including filtered velocity gradients and wall distance, to estimate SGS-stresses. Our data-driven closure model is based on localized learning and utilizes an FCNN architecture with a point-to-point mapping framework. In an a priori test, the model achieved a correlation coefficient exceeding ۹۵% for most predictions, except for and, which attained slightly lower values of ۸۶% and ۸۷%, respectively, compared to the true SGS stresses. Finally, we discussed potential strategies for improving prediction accuracy and overall performance.
کلیدواژه ها:
نویسندگان
Mohammadreza Azarshab
Mechanical Engineering Department, Iran University of Science and Technology, Tehran
Zeinab Pouransari
Mechanical Engineering Department, Iran University of Science and Technology, Tehran