Enhancing Short-Term Traffic Flow Forecasting by Hybrid Deep Learning Architectures and Attention Mechanisms (Case Study: High-Density Karaj-Chalous Road, Iran)

سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 44

فایل این مقاله در 20 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJTE-13-2_003

تاریخ نمایه سازی: 26 آذر 1404

چکیده مقاله:

The main tool to mitigate congestion and improve travel experiences effectively in intelligent traffic management is to predict the accurate and timely short-term traffic flow on high-volume roads. We present the performances of different deep learning models, such as LSTM, GRU, CNN, their hybrids CNN-LSTM and CNN-GRU, and versions with an attention mechanism for one-hour-ahead traffic flow prediction on mountainous and high-density Karaj-Chalous Road. The input data include the traffic data from two traffic counters. The cited data were derived for a period ranging from ۰۱/۰۱/۱۴۰۱ to ۰۱/۰۱/۱۴۰۳. Besides, the synoptic meteorological data were acquired within three-hour intervals, while the models are compared based on various quantitative accuracy and error metrics. The results showed that the CNN-LSTM model was the best among the rest, with an R² value of ۰.۸۳, because it captured complex traffic patterns and temporal dependencies effectively. The other models ranked next were LSTM, GRU, CNN-LSTM-GRU, and CNN-GRU, with R۲ values of ۰.۸۲, ۰.۸۱, ۰.۸۰, and ۰.۸۰, respectively. While the weakest models, CNN and CNN-MultiHead-Attention, yielded an R² of ۰.۶۰ and ۰.۶۲, respectively, this is due to a lack of consideration in these models regarding the nature of traffic data as a time series. Employing attention mechanisms improved prediction accuracy in some model architectures. This effect was highly varied based on the model structure itself. The results depict that deep, hybrid models with the integration of attention mechanisms can give more reliable and valuable forecasts to the intelligent transportation management systems for better travel planning and congestion reduction in similar roadways.

نویسندگان

Seyed Saber Naseralvai

Department of Civil Engineering, Shahid Bahonar University of Kerman, Kerman, Iran

Soheil Rezashoar

Department of Transportation Planning, Faculty of Engineering, Imam Khomeini International University, Qazvin, Iran

Akram Mazaheri

Faculty of Civil and Environmental Engineering, Tarbiat Modares University, Tehran, Iran

Saman Shafaati

Department of Civil Engineering, Shahid Bahonar University of Kerman, Kerman, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Ahmed, M. S., & Cook, A. R. (۱۹۷۹). Analysis of ...
  • Bai, L., Yao, L., Li, C., Wang, X., & Wang, ...
  • Bui, K.-H. N., Cho, J., & Yi, H. (۲۰۲۲). Spatial-temporal ...
  • Chen, H., & Grant-Muller, S. (۲۰۰۱). Use of sequential learning ...
  • Cirstea, R.-G., Yang, B., Guo, C., Kieu, T., & Pan, ...
  • Do, L. N. N., Taherifar, N., & Vu, H. (۲۰۱۸). ...
  • Do, L. N. N., Vu, H. L., Vo, B. Q., ...
  • Dougherty, M., & Cobbett, M. R. (۱۹۹۷). Short-term inter-urban traffic ...
  • Duan, P., Mao, G., Liang, W., & Zhang, D. (۲۰۱۹). ...
  • Dynamic Graph Convolutional Networks Based on Spatiotemporal Data Embedding for ...
  • Guo, J., Huang, W., & Williams, B. M. (۲۰۱۴). Adaptive ...
  • Guo, S., Lin, Y., Feng, N., Song, C., & Wan, ...
  • Iran Meteorological Organization (IRIMO). (۲۰۲۴). IRIMO Official Website ...
  • Iran Road Maintenance and Transportation Organization. (۲۰۲۴). RMTO Official Website ...
  • Jeong, Y., Byon, Y.-J., Castro-Neto, M., & Easa, S. (۲۰۱۳). ...
  • Jia, Y., Wu, J., & Xu, M. (۲۰۱۷). Traffic Flow ...
  • Karlaftis, M. G., & Vlahogianni, E. I. (۲۰۱۱). Statistical methods ...
  • Khorshidi, N., Zargari, S. A., Rezashoar, S., & Mirzahossein, H. ...
  • Kong, J., Fan, X., Zuo, M., Deveci, M., Jin, X., ...
  • Li, M., & Zhu, Z. (۲۰۲۱). Spatial-temporal fusion graph neural ...
  • Li, Y., Yu, R., Shahabi, C., & Liu, Y. (۲۰۱۸). ...
  • Liu, H., Zhu, C., Zhang, D., & Li, Q. (۲۰۲۳). ...
  • Lippi, M., Bertini, M., & Frasconi, P. (۲۰۱۳). Short-Term Traffic ...
  • Liu, T., Wang, Y., Zhou, H., Luo, J., & Deng, ...
  • Luo, X., Zhu, C., Zhang, D., & Li, Q. (۲۰۲۳). ...
  • Lv, Y., Duan, Y., Kang, W., Li, Z., & Wang, ...
  • Ma, X., Tao, Z., Wang, Y., Yu, H., & Wang, ...
  • Miglani, A., & Kumar, N. (۲۰۱۹). Deep learning models for ...
  • Naheliya, B., Redhu, P., & Kumar, K. (۲۰۲۳). A Hybrid ...
  • Okutani, I., & Stephenades, Y. J. (۱۹۸۴). Dynamic prediction of ...
  • Park, B., Messer, C., & Urbanik, T. (۱۹۹۸). Short-Term Freeway ...
  • Polson, N. G., & Sokolov, V. O. (۲۰۱۶). Deep learning ...
  • Shu, W., Cai, K., & Xiong, N. (۲۰۲۱). A Short-Term ...
  • Smith, B. L., & Demetsky, M. (۱۹۹۷). Traffic Flow Forecasting: ...
  • Song, C., Lin, Y., Guo, S., & Wan, H. (۲۰۲۰). ...
  • Stathopoulos, A., & Karlaftis, M. G. (۲۰۰۳). A multivariate state ...
  • Sun, S., Zhang, C., & Yu, G. (۲۰۰۶). A bayesian ...
  • Tedjopurnomo, D. A., Bao, Z., Zheng, B., Choudhury, F., & ...
  • Vlahogianni, E., Golias, J., & Karlaftis, M. (۲۰۰۴). Short-term traffic ...
  • Vlahogianni, E. I., Karlaftis, M. G., & Golias, J. (۲۰۱۴). ...
  • Wang, Y., Xu, S., & Di Feng. (۲۰۲۰). A New ...
  • Williams, B. M., & Hoel, L. (۲۰۰۳). Modeling and Forecasting ...
  • Wu, Y., Tan, H., Qin, L., Bin Ran, & Jiang, ...
  • Xia, M., Jin, D., & Chen, J. (۲۰۲۳). Short-Term Traffic ...
  • Xie, Y., Zhang, Y., & Ye, Z. (۲۰۰۷). Short-Term Traffic ...
  • Yu, B., Yin, H., & Zhu, Z. (۲۰۱۸). Spatio-Temporal Graph ...
  • Yuan, H., & Li, G. (۲۰۲۱). A Survey of Traffic ...
  • Zargari, S. A., Khorshidi, N., Mirzahossein, H., & Jin, X. ...
  • Zhang, W., Yu, Y., Qi, Y., Shu, F., & Wang, ...
  • Zhang, Y., & Ye, Z. (۲۰۰۸). Short-Term Traffic Flow Forecasting ...
  • https://doi.org/۱۰.۱۰۸۰/۱۵۴۷۲۴۵۰۸۰۲۲۶۲۲۸۱Zhao, Z., Chen, W., Wu, X., Chen, P. C. Y., ...
  • Zheng, C., Fan, X., Wang, C., & Qi, J. (۲۰۲۰). ...
  • نمایش کامل مراجع