Monitoring and Forecasting Land Subsidence in the Shahr-e Kord Plain Using Sentinel-۱ Time Series and Deep Learning Models

سال انتشار: 1404
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 61

فایل این مقاله در 9 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

ICARCAU03_287

تاریخ نمایه سازی: 23 آذر 1404

چکیده مقاله:

Land subsidence, as a gradual and infrastructure-related hazard, has intensified in recent decades across many plains of Iran, including the Shahr-e Kord Plain. The main drivers of this phenomenon include declining groundwater levels, compressible fine-grained soils, and uncontrolled urban expansion. Given the destructive impacts of subsidence on urban infrastructure, agriculture, and natural resources, precise monitoring, scientific forecasting, and managerial intervention are urgently needed at the provincial level in Chaharmahal and Bakhtiari. This study aims to design an operational framework for monitoring and forecasting land subsidence in the Shahr-e Kord Plain using Sentinel-۱ time series data, the SBAS-InSAR algorithm, and deep learning models. The proposed framework is intended to support decision-making processes within the Provincial Crisis Management Headquarters, the Regional Water Company, the Department of Natural Resources, and the Shahr-e Kord Municipality.

نویسندگان

Farhad LajmOwrak

PhD in Water Resources Engineering, Technical Expert, Shahr-e Kord Municipality

Farshad Jafari

BSc in Civil Engineering, Architecture Expert, Shahr-e Kord Municipality

Ashkan Amani Babadi

MSc in Structural Engineering, Urban Planning Expert, Shahr-e Kord Municipality

Iman Khosravi Rastabi

MSc in Geotechnical Engineering, Urban Planning Expert, Shahr-e Kord Municipality

Kianoosh Naderi Boldaji

Director General, Provincial Crisis Management Headquarters, Chaharmahal and Bakhtiari Province

Samieh Aalaei Boroujeni

Senior Expert in Crisis Affairs, Provincial Crisis Management Headquarters, Chaharmahal and Bakhtiari Province