Towards Green Concrete: A Data-Driven Machine Learning for Reducing Cement Content
محل انتشار: چهاردهمین کنگره بین المللی مهندسی عمران
سال انتشار: 1404
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 79
فایل این مقاله در 14 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
ICCE14_105
تاریخ نمایه سازی: 23 آذر 1404
چکیده مقاله:
This paper introduces an innovative data-driven approach to designing green concrete by minimizing cement content through the optimization of multi-component blends. A comprehensive dataset of ۲,۳۳۲ experimental concrete mix designs incorporating supplementary cementitious materials (SCMs) and nanomaterials was compiled from ۳۱ scientific publications. A hybrid machine learning model combining Artificial Neural Networks (ANN), Genetic Algorithms (GA), and XGBoost was developed to predict compressive strength and identify optimal mix compositions. To address the challenge of incomplete data, a binary-feature masking normalization strategy was implemented, allowing the model to process heterogeneous datasets with improved accuracy and robustness. The proposed framework successfully identifies sustainable concrete mixes that reduce cement consumption by up to ۴۰% without compromising mechanical performance. Hybrid combinations of SCMs such as fly ash, silica fume, and metakaolin, alongside nanomaterials like carbon nanotubes and nanoclay, demonstrated synergistic effects in enhancing strength while lowering environmental impact. The results confirm that intelligent integration of AI techniques with material science can significantly advance the development of high-performance, low-carbon concrete, offering a scalable solution for the construction industry's sustainability goals.
کلیدواژه ها:
نویسندگان
Ali Reza Shirazi
MSc. Student, Faculty of Interdisciplinary Science and Technology, Tarbiat Modares University, Tehran, Iran
Ali A. Shakeri
MSc. Student, Faculty of Interdisciplinary Science and Technology, Tarbiat Modares University, Tehran, Iran
Nikta Hasaninasab
MSc. Student, Faculty of Interdisciplinary Science and Technology, Tarbiat Modares University, Tehran, Iran
Sadegh Dardaei
Assistant Professor, Faculty of Interdisciplinary Science and Technology, Tarbiat Modares University, Tehran, Iran
Fariborz M. Tehrani
Professor, Department of Civil & Geomatics Engineering, California State University, Fresno, USA