A study on efficient chaotic modeling via fixed-memory length fractional Gauss maps

سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 71

فایل این مقاله در 22 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJNAO-15-35_001

تاریخ نمایه سازی: 22 آذر 1404

چکیده مقاله:

This paper investigates the dynamic behavior of the fractional Gauss map with fixed memory length, highlighting its potential for efficient chaotic modeling. Unlike classical fractional systems that require the full history of states, the proposed approach introduces a memory-limited ver-sion, significantly reducing computational cost while preserving complex dynamical features. Through bifurcation analysis, Lyapunov exponents, and the ۰ − ۱ test for chaos, the study demonstrates that the system ex-hibits a rich variety of behaviors, including periodic, quasi-periodic, and chaotic regimes, depending on the fractional order and memory size. A comparative evaluation with the classical Gauss map reveals that the fixed-memory model retains similar chaotic characteristics, but with improved computational efficiency. These findings suggest that fixed-memory frac-tional maps offer a practical alternative for simulating chaotic systems inreal-time applications.

نویسندگان

A. Bellout

Laboratory of Mathematics and their Interactions, Department of Mathematics, Abdelhafid Boussouf University Center, Algeria.

R. Bououden

Department of Applied Mathematics, Abdelhafid Boussouf University Center, Mila ,R.P ۲۶, Mila, ۴۳۰۰۰, Algeria.

S.E.I. Bouzeraa

Department of Applied Mathematics, Abdelhafid Boussouf University Center, Mila ,R.P ۲۶, Mila, ۴۳۰۰۰, Algeria.

M. Berkal

Department of Applied Mathematics, Abdelhafid Boussouf University Center, Mila ,R.P ۲۶, Mila, ۴۳۰۰۰, Algeria.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Abdeljawad, T. On Riemann and Caputo fractional difference, Comput. Math. ...
  • Abdelouahab, M.S. and Hamri, N. The Grünwald–Letnikov fractional-order derivative with ...
  • Abdlaziz, M.A.M., Ismail, A. I., Abdullah, F.A. and Mohd, H.M. ...
  • Almatrafi, M.B. and Berkal, M. Stability and bifurcation analysis of ...
  • Baleanu, D., Jajarmi, A., Defterli, O., Wannan, R., Sajjadi, S.S. ...
  • Baleanu, D., Jajarmi, A., Sajjadi, S.S. and Mozyrska, D. A ...
  • Baleanu, D., Shekari, P., Torkzadeh, L., Ranjbar, H., Jajarmi, A. ...
  • Bellout, A., Bououden, R., Houmor, T. and Berkal, M. Nonlinear ...
  • Bemporad, A. and Morari, M. Control of systems integrating logic, ...
  • Berkal, M. and Almatrafi, M.B. Bifurcation and stability of two-dimensional ...
  • Berkal, M. and Navarro, J.F. Qualitative behavior of a chemical ...
  • Bischi, G.I., Gardini, L. and Kopel, M. Analysis of global ...
  • Bououden, R. and Abdelouahab, M.S. On efficient chaotic optimization algorithm ...
  • Bououden, R. and Abdelouahab, M.S. Chaos in new ۲-d discrete ...
  • Bououden, R. and Abdelouahab, M.S. Chaotic optimization algorithm based on ...
  • Bououden, R., Abdelouahab, M.S. and Jarad, F. Non linear dynamics ...
  • Bououden, R., Abdelouahab, M.S., Jarad, F. and Hammouch, Z. A ...
  • Bourafa, S., Abdelouahab, M.S. and Lozi, R. On Periodic Solutions ...
  • Bouzeraa, S.E.I., Bououden, R. and Abdelouahab, M.S. Fractional logistic map ...
  • Dai, W., Zhou, R., Lin, Y. and Liu, Y. Lightweight ...
  • Donato, C. and Grassi, G. Bifurcation and chaos in the ...
  • Ebrahimzadeh, A., Jajarmi, A. and Baleanu, D. Enhancing water pollution ...
  • Gümüş, M. and Türk, K. Dynamical behavior of a hepatitis ...
  • Gümüş, M. and Teklu, S.W. Cost-Benefit and dynamical investigation of ...
  • Gümüş, M. and Türk, K. Global analysis of a monkey-pox ...
  • Hénon, M. A two dimensional mapping with a strange attractor, ...
  • Hilborn, R.C. Chaos and nonlinear dynamics: an introduction for scientists ...
  • Hu, T. Discrete chaos in fractional Henon map, Appl. Math., ...
  • Jan, C. and Nechvatel, L. Local bifurcations and chaos in ...
  • Khennaoui, A.A., Ouannas, A., Bendoukha, S., Wang, X. and Pham, ...
  • Li, T.Y. and Ismail, J.A. Period three implies chaos, Am. ...
  • Lozi, R. Un attracteur étrange du type attracteur de Hénon, ...
  • Magin, R.L. Fractional calculus in bioengineering, Begell House Publishers, ۲۰۰۶ ...
  • May, R. Simple mathematical models with very complicated dynamics, Nature, ...
  • Miller, K.S. and Ross, B. Fractional difference calculus, Proc. of ...
  • Sarmah, H.K., Das, M.C., Baishya, T.K. and Paul, R. Chaos ...
  • Sun, H., Chen, W. and Chen, Y. Variable-order fractional differential ...
  • Wu, G.C. and Baleanu, D. Discrete fractional logistic map and ...
  • نمایش کامل مراجع