Comparative evaluation of large-scale many objective algorithms on complex optimization problems

سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 40

فایل این مقاله در 40 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJNAO-15-35_008

تاریخ نمایه سازی: 22 آذر 1404

چکیده مقاله:

In the field of optimization, there has been an enormous surge in interest in addressing large-scale many-objective problems. Numerous academicians and practitioners have contributed to evolutionary computation by developing a variety of optimization algorithms tailored to tackle computationally challenging optimization problems. Recently, various largescale many-objective optimization algorithms (LSMaOAs) have been proposed to address complex large-scale many-objective optimization prob lems (LSMaOPs). These LSMaOAs have shown remarkable performance in addressing a variety of LSMaOPs. However, there is a pressing need to further investigate their performance in comparison to each other on different classes of LSMaOPs. In this study, we conduct a comparative investigation of three established LSMaOAs namely, LMEA, LMOCSO and S۳CMAES over rigorous benchmarking on DTLZ, LSMOP, UF۹-۱۰, WFG test suites, encompassing problem sets with three to ten objectives and varying numbers of variables between ۱۰۰ and ۵۰۰. Additionally, we assess the algorithm’s efficacy on a test suite specifically designed for large-scale multi/many-objective problems (۱۰۰-۱۰۰۰ decision variables). In addition, we propose Hybrid-LMEA, a light hybrid that integrates decision-variable clustering with competitive learning to improve both convergence and diversity. The hybrid works especially well on high-dimensional large-scale many-objective optimization problems with better performance in ۸ and ۱۲ out of ۲۷ test cases for IGD and GD, respectively. The outcomes of the experiments indicate the relative efficacy and effectiveness of the different algorithms in addressing large-scale many-objective problems. Researchers can leverage this comparative data to make informed decisions about which algorithms to employ for particular optimization problem domains.

نویسندگان

R. Chaudhary

Department of Computer Science Engineering and Information Technology, Jaypee Institute of Information Technology Noida, India.

A. Prajapati

Department of Computer Science Engineering and Information Technology, Jaypee In-stitute of Information Technology Noida, India.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Amarjeet and Chhabra, J.K. Many-objective artificial bee colony algorithm for ...
  • Antonio, L.M. and Coello, C.A.C. Use of cooperative coevolution for ...
  • Babu, B. and Jehan, M.M.L. Differential evolution for multi-objective optimization, ...
  • Bechikh, S., Elarbi, M. and Ben Said, L. Many-objective optimization ...
  • Brockhoff, D. and Zitzler, E. Are all objectives necessary? On ...
  • Cao, B., Fan, S., Zhao, J., Tian, S., Zheng, Z., ...
  • Cao, B., Zhang, Y., Zhao, J., Liu, X., Skonieczny, L. ...
  • Cao, B., Zhao, J., Lv, Z., Liu, X., Yang, S., ...
  • Chand, S. and Wagner, M. Evolutionary many-objective optimization: A quick-start ...
  • Chen, H., Cheng, R., Wen, J., Li, H. and Weng, ...
  • Cheng, R., Jin, Y., Olhofer, M. and Sendhoff, B. A ...
  • Cheng, R., Jin, Y., Olhofer, M. and Sendhoff, B. Test ...
  • Cheng, R., Rodemann, T., Fischer, M., Olhofer, M. and Jin, ...
  • Topics Comput. Intell., ۱(۲) (۲۰۱۷), ۹۷–۱۱۱ ...
  • Deb, K. and Agrawal, R.B. Simulated binary crossover for continuous ...
  • Deb, K., Pratap, A., Agarwal, S. and Meyarivan, T. A ...
  • Deb, K., Sindhya, K. and Hakanen, J. Multi-objective optimization, in ...
  • Deb, K., Thiele, L., Laumanns, M. and Zitzler, E. Scalable ...
  • Fleming, P.J., Purshouse, R.C. and Lygoe, R.J. Many-objective optimization: An ...
  • Gu, Z.M. and Wang, G.G. Improving NSGA-III algorithms with information ...
  • Harman, M. and Yao, X. Software module clustering as a ...
  • He, C., Cheng, R., Li, L., Tan, K.C. and Jin, ...
  • He, C., Li, L., Tian, Y., Zhang, X., Cheng, R., ...
  • Hong, H., Ye, K., Jiang, M., Cao, D. and Tan, ...
  • Li, B., Li, J., Tang, K. and Yao, X. Many-objective ...
  • Li, H. and Zhang, Q. Multiobjective optimization problems with complicated ...
  • Li, K., Wang, R., Zhang, T. and Ishibuchi, H. Evolutionary ...
  • Liu, Q., Zou, J., Yang, S. and Zheng, J. A ...
  • Liu, R., Ren, R., Liu, J. and Liu, J. A ...
  • Ma, L., Huang, M., Yang, S., Wang, R. and Wang, ...
  • Ma, X., Liu, F., Qi, Y., Wang, X., Li, L., ...
  • Miguel Antonio, L. and Coello Coello, C.A. Decomposition-based approach for ...
  • Okola, I., Omulo, E.O., Ochieng, D.O. and Ouma, G. A ...
  • Pan, X., Wang, L., Qiu, Q., Qiu, F. and Zhang, ...
  • Prajapati, A. A comparative study of many-objective optimizers on large-scale ...
  • Prajapati, A. A customized PSO model for large-scale many-objective software ...
  • Prajapati, A. A particle swarm optimization approach for large-scale many-objective ...
  • Prajapati, A. Software module clustering using grid-based large-scale many-objective particle ...
  • Prajapati, A. and Chhabra, J.K. Madhs: Many-objective discrete harmony search ...
  • Purshouse, R.C. and Fleming, P.J. Evolutionary many-objective optimi-sation: An exploratory ...
  • Riquelme, N., von Lücken, C. and Baran, B. Performance metrics ...
  • Saxena, D.K. and Deb, K. Dimensionality reduction of objectives and ...
  • Tian, Y., Si, L., Zhang, X., Cheng, R., He, C., ...
  • Tian, Y., Zheng, X., Zhang, X. and Jin, Y. Efficient ...
  • Wang, Y., Zhang, Q. and Wang, G.G. Improving evolutionary algorithms ...
  • Xu, Y., Xu, C., Zhang, H., Huang, L., Liu, Y., ...
  • Zhang, J., Wei, L., Fan, R., Sun, H. and Hu, ...
  • Zhang, Q. and Li, H. MOEA/D: A multiobjective evolutionary algorithm ...
  • Zhang, X., Tian, Y., Cheng, R. and Jin, Y. A ...
  • Zhang, Y., Wang, G.G., Li, K., Yeh, W.C., Jian, M. ...
  • Zhou, Y., Kong, L., Cai, Y., Wu, Z., Liu, S., ...
  • Zille, H. Large-scale multi-objective optimisation: New approaches and a classification ...
  • Zille, H., Ishibuchi, H., Mostaghim, S. and Nojima, Y. A ...
  • Zille, H. and Mostaghim, S. Comparison study of large-scale optimisation ...
  • Zitzler, E. SPEA۲: Improving the performance of the strength Pareto ...
  • نمایش کامل مراجع