Comparative evaluation of large-scale many objective algorithms on complex optimization problems
سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 40
فایل این مقاله در 40 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJNAO-15-35_008
تاریخ نمایه سازی: 22 آذر 1404
چکیده مقاله:
In the field of optimization, there has been an enormous surge in interest in addressing large-scale many-objective problems. Numerous academicians and practitioners have contributed to evolutionary computation by developing a variety of optimization algorithms tailored to tackle computationally challenging optimization problems. Recently, various largescale many-objective optimization algorithms (LSMaOAs) have been proposed to address complex large-scale many-objective optimization prob lems (LSMaOPs). These LSMaOAs have shown remarkable performance in addressing a variety of LSMaOPs. However, there is a pressing need to further investigate their performance in comparison to each other on different classes of LSMaOPs. In this study, we conduct a comparative investigation of three established LSMaOAs namely, LMEA, LMOCSO and S۳CMAES over rigorous benchmarking on DTLZ, LSMOP, UF۹-۱۰, WFG test suites, encompassing problem sets with three to ten objectives and varying numbers of variables between ۱۰۰ and ۵۰۰. Additionally, we assess the algorithm’s efficacy on a test suite specifically designed for large-scale multi/many-objective problems (۱۰۰-۱۰۰۰ decision variables). In addition, we propose Hybrid-LMEA, a light hybrid that integrates decision-variable clustering with competitive learning to improve both convergence and diversity. The hybrid works especially well on high-dimensional large-scale many-objective optimization problems with better performance in ۸ and ۱۲ out of ۲۷ test cases for IGD and GD, respectively. The outcomes of the experiments indicate the relative efficacy and effectiveness of the different algorithms in addressing large-scale many-objective problems. Researchers can leverage this comparative data to make informed decisions about which algorithms to employ for particular optimization problem domains.
کلیدواژه ها:
نویسندگان
R. Chaudhary
Department of Computer Science Engineering and Information Technology, Jaypee Institute of Information Technology Noida, India.
A. Prajapati
Department of Computer Science Engineering and Information Technology, Jaypee In-stitute of Information Technology Noida, India.
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :