Quintic B-spline method for numerical solution of second-order singularly perturbed delay differential equations
سال انتشار: 1405
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 47
فایل این مقاله در 14 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_CMDE-14-1_004
تاریخ نمایه سازی: 19 آذر 1404
چکیده مقاله:
This article presents a quintic B-spline method to find an approximate solution of the second-order singularly perturbed differential equation in which the convection term occurs with a negative shift. The proposed method gives rise to a pentadiagonal linear system. Thomas' algorithm is employed to solve the obtained system of equations. The method’s convergence is examined through truncation error analysis, and the existence and uniqueness of the solution are also established. Maximum absolute error is tabulated for two numerical examples, proving the proposed method’s efficiency. Graphs are drawn to show the behavior of the solution. A comparative study shows that the obtained solution is better than the previous solutions in the literature. The method is found to be fourth-order convergent. The effect of the delay parameter on the boundary region is also discussed in the example.
کلیدواژه ها:
Singularly perturbed delay differential equation ، Boundary value problem ، Spline methods ، Quintic B-spline method ، Existence and uniqueness ، uniform mesh ، Convergence
نویسندگان
Shilpa Malge
Symbiosis Institute of Technology, Pune Campus, Symbiosis International (Deemed University), Pune, India.
Ram Lodhi
Symbiosis Institute of Technology, Pune Campus, Symbiosis International (Deemed University), Pune, India.