Numerical solution of stochastic fractional integro-differential and Itô-Volterra integral equations via fractional Genocchi wavelets
سال انتشار: 1405
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 74
فایل این مقاله در 19 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_CMDE-14-1_009
تاریخ نمایه سازی: 19 آذر 1404
چکیده مقاله:
In this research, a novel approach based on the fractional-order Genocchi wavelets (FGWs), inverse hyperbolic functions, and collocation technique is introduced for obtaining numerical solutions of stochastic fractional integro differential equations (SFIDEs) and Itô-Volterra integral equations (IVIEs). Initially, we utilize the Laplace trans form approach to approximate the Caputo fractional derivative. Then, the unknown solution is approximated via a combination of the FGWs and inverse hyperbolic functions. We replace this approximation and its derivatives in the resulting stochastic equation (SE). By the Gauss-Legendre quadrature rule (GLQR) and collocation method, we obtain a system of nonlinear algebraic equations. The derived algebraic system can be readily solved through application of Newton’s iterative scheme. Also, we show the convergence of the mentioned scheme. Ultimately, several test problems are examined to demonstrate the applicability and effectiveness of the suggested technique.
کلیدواژه ها:
Fractional-order Genocchi wavelets ، Fractional stochastic integro-differential equations ، Laplace transform ، Convergence analysis
نویسندگان
Parisa Rahimkhani
Faculty of Science, Mahallat Institute of Higher Education, Mahallat, Iran.
Yadollah Ordokhani
Department of Mathematics, Faculty of Mathematical Sciences, Alzahra University, Tehran, Iran.
Pedro M Lima
Centro de Matemática Computacional e Estocástica, Instituto Superior Técnico, Universidade de Lisboa, Portugal.