Numerical solution of stochastic fractional integro-differential and Itô-Volterra integral equations via fractional Genocchi wavelets

سال انتشار: 1405
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 74

فایل این مقاله در 19 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_CMDE-14-1_009

تاریخ نمایه سازی: 19 آذر 1404

چکیده مقاله:

In this research, a novel approach based on the fractional-order Genocchi wavelets (FGWs), inverse hyperbolic functions, and collocation technique is introduced for obtaining numerical solutions of stochastic fractional integro differential equations (SFIDEs) and Itô-Volterra integral equations (IVIEs). Initially, we utilize the Laplace trans form approach to approximate the Caputo fractional derivative. Then, the unknown solution is approximated via a combination of the FGWs and inverse hyperbolic functions. We replace this approximation and its derivatives in the resulting stochastic equation (SE). By the Gauss-Legendre quadrature rule (GLQR) and collocation method, we obtain a system of nonlinear algebraic equations. The derived algebraic system can be readily solved through application of Newton’s iterative scheme. Also, we show the convergence of the mentioned scheme. Ultimately, several test problems are examined to demonstrate the applicability and effectiveness of the suggested technique.

کلیدواژه ها:

Fractional-order Genocchi wavelets ، Fractional stochastic integro-differential equations ، Laplace transform ، Convergence analysis

نویسندگان

Parisa Rahimkhani

Faculty of Science, Mahallat Institute of Higher Education, Mahallat, Iran.

Yadollah Ordokhani

Department of Mathematics, Faculty of Mathematical Sciences, Alzahra University, Tehran, Iran.

Pedro M Lima

Centro de Matemática Computacional e Estocástica, Instituto Superior Técnico, Universidade de Lisboa, Portugal.