A U-Net framework using differential equations for enhanced computer vision in lung disease diagnosis

سال انتشار: 1405
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 47

فایل این مقاله در 18 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_CMDE-14-1_026

تاریخ نمایه سازی: 19 آذر 1404

چکیده مقاله:

This study presents a U-Net-based approach for the classification of lung diseases using chest X-ray images. The model effectively leverages its encoder-decoder architecture and skip connections to capture both high-level semantic features and detailed spatial information, crucial for medical image analysis. The U-Net model was trained and tested on a dataset of ۳,۴۷۵ X-ray images, representing three classes: Normal, Lung Opacity, and Viral Pneumonia. The model achieved strong performance, with a weighted F۱ score of ۰.۹۷۷۰ and Cohen’s Kappa of ۰.۹۶۵۳, demonstrating its high accuracy in classifying lung diseases. These results confirm the suitability of U-Net for medical imaging tasks, particularly in detecting subtle abnormalities in chest X-ray images. However, the study also identifies challenges, including class imbalance in medical datasets and the computational demands of training large models like the U-Net. Future improvements could focus on enhancing generalizability and reducing computational complexity through advanced data augmentation, domain adaptation, and architectural optimizations. Overall, this research highlights the potential of U-Net for developing reliable and efficient automated diagnostic tools in healthcare.

نویسندگان

Naif Almusallam

Department of Management Information Systems (MIS)‎, ‎School of Business‎, ‎King Faisal University (KFU)‎, ‎Al-Ahsa ۳۱۹۸۲‎, ‎Saudi Arabia.

Vusala Muradova

Lankaran State University‎, ‎Lankaran‎, ‎Azerbaijan.

Mostafa Abotaleb

Engineering School of Digital Technologies, Yugra State University, Khanty Mansiysk, ۶۲۸۰۱۲, Russia.

Tatiana Makarovskikh

Department of System Programming‎, ‎South Ural State University‎, ‎Chelyabinsk‎, ‎۴۵۴۰۸۰‎, ‎Russia.

Hussein Alkattan

Department of System Programming‎, ‎South Ural State University‎, ‎Chelyabinsk‎, ‎۴۵۴۰۸۰‎, ‎Russia.

Omar Gamal Ahmed

Department of Electric Drive‎, ‎Mechatronics and Electromechanics‎, ‎South Ural State University‎, ‎Chelyabinsk‎, ‎۴۵۴۰۸۰‎, ‎Russia.

Maad Mohsin Mijwil

College of Administration and Economics, Al-Iraqia University, Baghdad, Iraq.