Forecasting demand and optimizing the ordering of goods in the supply chain using artificial intelligence in Kale company
سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 58
فایل این مقاله در 12 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJNAA-16-12_003
تاریخ نمایه سازی: 19 آذر 1404
چکیده مقاله:
The globalization of business market competition has created an uncertain environment for manufacturing organizations, so the managers are trying and planning more to survive. One of the world's largest and most complex industry sectors is the food supply chain, which plays an important role in economic growth. Food characteristics, especially shelf life, strongly influence the three sustainability criteria. Much attention is paid to perishable food products with a limited lifespan due to the large amount of waste, harmful environmental effects and special storage and transportation conditions. One of the problems faced by organizations facing customer demand is the change in demand, which causes uncertainty on the producer's side (production quantity), which also causes uncertainty in purchasing and, in a sense, in the entire supply chain. In this research, the ۲-layer perceptron neural network and the following neural network parameters were used to predict the demand for the product, because the demand value is a large number, for this reason, in the data entry table, we divide the demand output value by ۱۰۰۰ to get the average The squared error should be examined. The results showed that the prediction using the multi-layer perceptron neural network toolbox in MATLAB software, due to the upward trend of Venezuelan demand, the prediction value of the neural network is close to the real value.
کلیدواژه ها:
نویسندگان
Mohammadreza Pakbin
Department of Business Management, Rasht Branch, Islamic Azad University, Rasht, Iran
Yalda Rahmati Ghofrani
Department of Business Management, Rasht Branch, Islamic Azad University, Rasht, Iran
Kambiz Shahroudi
Department of Business Management, Rasht Branch, Islamic Azad University, Rasht, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :