Artificial Neural Network for Optimizing Gamma Radiation Shielding
محل انتشار: مجله فیزیک و مهندسی پزشکی، دوره: 15، شماره: 6
سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 59
فایل این مقاله در 8 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JBPE-15-6_007
تاریخ نمایه سازی: 19 آذر 1404
چکیده مقاله:
Background: Designing shields for gamma radiation sources is particularly important due to their extensive use in medical, industrial, and research studies.Objective: This study aimed to explore the ability of an Artificial Neural Network (ANN) to identify the optimized shield for a typical gamma source. Despite the effectiveness of Monte Carlo simulations in determining optimal shielding materials and geometries, they are time-consuming and require numerous simulations for each configuration.Material and Methods: In this simulating study, the MCNPX Monte Carlo code was utilized to conduct simulations using a previously proposed shielding material. After validating the simulation accuracy, a large dataset was generated to serve as input and target data for the machine learning process. The method’s precision was assessed by comparing the results of the ANN with those of Monte Carlo simulations. Dose calculations were performed using a water phantom.Results: The deviation of less than ۱% was computed between the simulation and the ANN. The network also exhibited satisfactory predictions for unknown data. Additionally, the dose was evaluated using a water phantom to assess further and optimize the selected shielding material. Conclusion: The ANNs are widespread and significant in radiation shielding studies. The developed network can accurately predict unknown weight fraction combinations. The designed network can effectively predict unknown weight fraction combinations.
کلیدواژه ها:
نویسندگان
Mahdieh Mokhtari Dorostkar
Department of Physics, Urmia University, Urmia, Iran
Fatemeh Sadat Rasouli
Department of Physics, K.N. Toosi University of Technology, Tehran, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :