language model adaptation using dirichlet class language model based on part-of-speech

سال انتشار: 1392
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 1,041

فایل این مقاله در 6 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JIST-2-5_005

تاریخ نمایه سازی: 21 فروردین 1393

چکیده مقاله:

Language modeling has many applications in a large variety of domains. Performance of this model depends on its adaptation to a particular style of data. Accordingly, adaptation methods endeavour to apply syntactic and semantic characteristics of the language for language modeling. The previous adaptation methods such as family of Dirichlet class language model (DCLM) extract class of history words. These methods due to lake of syntactic information are not suitable for high morphology languages such as Farsi. In this paper, we present an idea for using syntactic information such as part-of-speech (POS) in DCLM for combining with one of the language models of n-gram family. In our work, word clustering is based on POS of previous words and history words in DCLM. The performance of language models are evaluated on BijanKhan corpus using a hidden Markov model based ASR system. The results show that use of POS information along with history words and class of history words improves performance of language model, and decreases the perplexity on our corpus. Exploiting POS information along with DCLM, the word error rate of the ASR system decreases by 1.2% compared to DCLM.

نویسندگان

ali hatami

Computer Engineering Department, Iran University of Science and Technology, Tehran, Iran

Ahmad Akbari

Computer Engineering Department, Iran University of Science and Technology, Tehran, Iran

Babak Nasersharif

Electrical and Computer Engineering Department, K. N. Toosi University of Technology, Tehran, Iran