PREDICTION OF ROTATIONAL TORQUE IN HORIZENTAL DRILLING USING FUZZY C MEANS CLUSTERING

سال انتشار: 1392
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 1,299

فایل این مقاله در 6 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

NIPC01_072

تاریخ نمایه سازی: 28 فروردین 1393

چکیده مقاله:

Horizontal directional drilling (HDD) is widely used in petroleum industry because of its application to reduce costs, drilling in offshores, drilling multilateral wells and several other benefits. In a variety ofconditions it is necessary to predict the torque required for performing the reaming operation (nearsurface), However, because of complicated mechanical and geomechanical parameters which effect rotational torque, presently, there is no appropriate and convenient method to accomplish these tasks. The objective of this study is to improve the prediction of the torque during drilling operations usingFuzzy C means clustering (FCM).Although available information for drilling techniques does provide some means of predicting the torque, it is not sufficient for meeting the present needs. In this study FCM is used to predict the value of torque in horizontal drilling based on operational field data. Number ofclusters which is most effective parameter on FCM performance, is changed from 1 to 84 (number of data) to find best condition for FCM. Results showed that this model could predict rotational torque with correlation coefficient with real data equal to R2= 8759 for Sugeno FIS and R2= 8452 for Mamdani FIS. So this method could predict Rotational torque better than previous numerical and analytical models

کلیدواژه ها:

Fuzzy C means Clustering ، Horizontal Drilling ، Rotational Torque

نویسندگان

Vahid Mojarradi

Department of Petroleum Engineering, Shahid Bahonar University of Kerman, Kerman, Iran Energy and Environmental Research Center (EERC), Shahid Bahonar University of Kerman, Kerman, Iran

Mohammad Ranjbar

Department of Mining Engineering, Shahid Bahonar University of Kerman, Kerman, Iran

Khabat Amiri Hoseini

Institute of iron ore and steel, Kerman, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Lesso Jr., W.G. Chau, M.T. Lesso Sr., W.G., "Quantifying bottomhole ...
  • Eric, E., Wojtanowicz, K, " A field method for assessing ...
  • Niznik, D., Gonet, A., 2007, "Identificatio of rotational torque and ...
  • Tamhane, D., Wong, P.M., Aminzadeh, F., Nikravesh, M., "Soft computing ...
  • Lbatullin, R.R., Lbragimov, N.G., Khisamov, R.S., Podymov, E.D., Shutov, A.A.." ...
  • Weiss, W., Balch, R., " How artificial intelligence methods can ...
  • Liu, Y., Bai, B., Li, Y.X., Coste, J.P "Optimization design ...
  • نمایش کامل مراجع