Radiomics-Based Machine Learning to Support Visual Assessment for Improved Epilepsy Classification Using ۱۸F-FDG Brain PET

سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 2

فایل این مقاله در 12 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJMP-22-4_002

تاریخ نمایه سازی: 12 آذر 1404

چکیده مقاله:

Introduction: This study explored radiomics-based machine learning (ML) models as complementary tools to visual evaluation for classifying drug-resistant epilepsy patients and healthy controls using ۱۸F-FDG brain Positron Emission Tomography (PET). Because visual interpretation can be subjective and variable, especially for novice readers, objective and reproducible computational methods are needed.Material and Methods: Twenty-one drug-resistant epilepsy patients and sixteen healthy controls underwent ¹⁸F-FDG brain PET imaging. From contralateral brain regions, ۹۲ radiomics features (first-order statistics and second-order texture matrices) were extracted. Feature selection included Student’s t-test, principal component analysis, and ridge regression. Logistic regression (LR) and support vector machine (SVM) classifiers were trained and evaluated using ۱۰-fold cross-validation and repeated ۸۰/۲۰ train–test splits. A permutation test (n = ۱۰۰۰) assessed whether differences between classifier performances were statistically significant. LR, chosen for its lower computational cost and interpretability, was used for comparison with human visual assessments.Results: Across six radiomics feature groups, LR models demonstrated strong performance, with mean accuracy of ۰.۹۴(۰.۰۵), precision ۰.۹۶(۰.۰۳), recall ۰.۹۲(۰.۱۰), specificity ۰.۹۷(۰.۰۲), and AUC ۰.۹۸(۰.۰۰). SVM models showed similarly high accuracy ۰.۹۸(۰.۰۱), precision ۰.۹۴(۰.۰۵), recall ۰.۹۶(۰.۰۳), specificity ۰.۹۸(۰.۰۱), and AUC ۰.۹۸(۰.۰۰). Novice visual assessments had moderate accuracy (۰.۶۲ and ۰.۶۷), perfect specificity, lower sensitivity (۰.۶۰ and ۰.۶۵), and AUCs of ۰.۸۰ and ۰.۸۲۵. The final LR model achieved a mean AUC of ۰.۹۶(۰.۰۱).Conclusion: This hybrid radiomics-visual approach improves classification accuracy in pre-surgical evaluation of drug-resistant epilepsy. By integrating quantitative radiomics with clinical interpretation, the framework reduces variability and improves reliability for less experienced clinicians.

نویسندگان

Naghmeh Firouzi

Research Center for Molecular and Cellular Imaging, Advanced Medical Technologies and Equipment Institute, Tehran University of Medical Sciences, Tehran, Iran

Hossein Ghadiri

Medical Physics and Biomedical Engineering Dept., Medical School, Tehran University of Medical Sciences

Elnaz Jenabi

Research Center for Nuclear Medicine, Tehran University of Medical Sciences, Tehran, Iran

Parham Geramifar

Research Center for Nuclear Medicine, Tehran University of Medical Sciences, Tehran, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Rigney G, Lennon M, Holderrieth P. The use of computational ...
  • Milligan TA. Epilepsy: a clinical overview. The American Journal of ...
  • Scheffer IE, Berkovic S, Capovilla G, Connolly MB, French J, ...
  • Perucca E, Perucca P, White HS, Wirrell EC. Drug resistance ...
  • Mohammadzadeh P, Nazarbaghi S. The prevalence of drug-resistant-epilepsy and its ...
  • Bernasconi N, Bernasconi A. Imaging the epileptic brain—time for new ...
  • Kini LG, Thaker AA, Hadar PN, Shinohara RT, Brown M-G, ...
  • Thijs RD, Surges R, O'Brien TJ, Sander JW. Epilepsy in ...
  • Duncan JS, Winston GP, Koepp MJ, Ourselin S. Brain imaging ...
  • Hainc N, McAndrews MP, Valiante T, Andrade DM, Wennberg R, ...
  • Steinbrenner M, Duncan JS, Dickson J, Rathore C, Wächter B, ...
  • Avendaño-Estrada A, Velasco F, Velasco AL, Cuellar-Herrera M, Saucedo-Alvarado PE, ...
  • Wu D, Yang L, Gong G, Zheng Y, Jin C, ...
  • Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, Van Stiphout ...
  • Fusco R, Granata V, Grazzini G, Pradella S, Borgheresi A, ...
  • Mo J, Liu Z, Sun K, Ma Y, Hu W, ...
  • Park JE, Kim HS. Radiomics as a quantitative imaging biomarker: ...
  • Sone D, Beheshti I. Clinical application of machine learning models ...
  • Liu Z, Wang Y, Liu X, Du Y, Tang Z, ...
  • Zwanenburg A, Vallières M, Abdalah MA, Aerts HJ, Andrearczyk V, ...
  • Salem N, Hussein S. Data dimensional reduction and principal components ...
  • Palo HK, Sahoo S, Subudhi AK. Dimensionality reduction techniques: Principles, ...
  • Segato A, Marzullo A, Calimeri F, De Momi E. Artificial ...
  • Parmar C, Grossmann P, Bussink J, Lambin P. Machine learning ...
  • Marcot BG, Hanea AM. What is an optimal value of ...
  • Guery D, Rheims S. Clinical management of drug resistant epilepsy: ...
  • Sultana B, Panzini M-A, Carpentier AV, Comtois J, Rioux B, ...
  • Burkholder DB, Ritaccio AL, Shin C. Pre‐surgical Evaluation. Epilepsy. ۲۰۲۱:۳۴۵-۶۵ ...
  • Fitsiori A, Hiremath SB, Boto J, Garibotto V, Vargas MI. ...
  • Guo J, Guo M, Liu R, Kong Y, Hu X, ...
  • Tomás J, Pittau F, Hammers A, Bouvard S, Picard F, ...
  • Pittau F, Grouiller F, Spinelli L, Seeck M, Michel CM, ...
  • Peter J, Houshmand S, Werner TJ, Rubello D, Alavi A. ...
  • Wissel BD, Greiner HM, Glauser TA, Holland‐Bouley KD, Mangano FT, ...
  • Yuan J, Ran X, Liu K, Yao C, Yao Y, ...
  • Cantor-Rivera D, Khan AR, Goubran M, Mirsattari SM, Peters TM. ...
  • Memarian N, Kim S, Dewar S, Engel Jr J, Staba ...
  • Del Gaizo J, Mofrad N, Jensen JH, Clark D, Glenn ...
  • Hao J, Xie Y, Liu Q, Xu J, Zhang P, ...
  • Liao K, Wu H, Jiang Y, Dong C, Zhou H, ...
  • Zhang Y, Yan P, Liang F, Ma C, Liang S, ...
  • Cheong E-N, Park JE, Jung DE, Shim WH. Extrahippocampal radiomics ...
  • Gao A, Yang H, Wang Y, Zhao G, Wang C, ...
  • نمایش کامل مراجع