Alzheimer's disease Recognition Classification Study Using MRI Images Based on Deep Learning and Dual Multilayer Attention Mechanisms
محل انتشار: مجله فیزیک پزشکی ایران، دوره: 22، شماره: 4
سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 69
فایل این مقاله در 9 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJMP-22-4_007
تاریخ نمایه سازی: 12 آذر 1404
چکیده مقاله:
Introduction: Current deep learning-based computer-aided diagnosis (CAD) techniques face challenges in hierarchical feature extraction and computational efficiency. Traditional convolutional neural networks (CNN) often focus on local or single-scale information, neglecting global correlations of brain atrophy and multiscale pathological features. Additionally, the parameter explosion problem in deep networks limits model's generalization ability on small and medium-sized datasets. While the introduction of attention mechanisms has significantly improved feature extraction and enhanced CNN recognition capabilities, existing attention mechanisms are mostly single-scale, focusing on feature maps at specific hierarchical levels and ignoring the correlations between features of different layers.Material and Methods: To address these issues, this study proposes a lightweight model combining a shallow feature pyramid CNN with a Dual Multi-level Attention (DMA) mechanism. Experiments using the public OASIS-۱ dataset, which contains ۸۶,۴۳۷ MRI images across ۴ categories, employ a focal loss function to handle class imbalance.Results: The results show that the model including DMA outperforms both the baseline CNN and the single-scale attention mechanism in terms of accuracy (ACC), sensitivity (SEN), and specificity (SPE). Specifically, compared to CNN and CNN+CBAM: ACC improved by ۳.۳۳% and ۱.۲۶%, SEN improved by ۱۳.۲% and ۰.۹%, and SPE improved by ۱%.Conclusion: The model demonstrates significant advantages in distinguishing small-sample classes and differentiating between very mild dementia and normal controls, highlighting its superiority in fine-grained pathological discrimination.
کلیدواژه ها:
نویسندگان
Peng Xiao
Chengdu University Of Information Technology
Yan Chen
Chengdu University Of Information Technology
MeiQin Wu
Chengdu University Of Information Technology
JiaCui Tang
Chengdu University Of Information Technology
Wei Ma
Chengdu University Of Information Technology
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :