Prediction of Shear Capacity of RC Deep Beams Via a Soft Computing Method

سال انتشار: 1405
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 11

فایل این مقاله در 11 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_CEAS-2-1_001

تاریخ نمایه سازی: 12 آذر 1404

چکیده مقاله:

It is well known that the shear capacity of RC deep beams is affected by many mechanical and geometric parameters. The accurate prediction of the shear capacity still stands out as one of the major stumbling blocks in structural engineering practice. Traditional prediction methods have often proven less than precise. On the other hand, artificial intelligence-based methods, particularly those represented by SVMs, have presented themselves as a promising alternative. This research employed an enhanced machine learning technique, known as WLS-SVM, to estimate the shear capacity of reinforced concrete deep beams. In assembling a comprehensive dataset, ۲۱۴ experimental results are obtained from the literature. From selected inputs and outputs, under the supervision of a teaching-learning type approach, a predictive model is derived via WLS-SVM. This model is compared with other AI-based methods and codified design procedures. It presented the best accuracy, with major statistical indicators, including an R² of ۰.۹۸۰۴, showing the superiority of the WLS-SVM approach when compared to other methods. Therefore, the study's results reveal WLS-SVM as a very accurate and viable option for the structural calculation and design of reinforced concrete deep beams.

کلیدواژه ها:

نویسندگان

Masoud Mahmoudabadi

Department of Civil Engineering, Faculty of Engineering, University of Qom, Qom, Iran

Seyed Mohammad Reza Hasani

Department of Civil Engineering, Qom Branch, Islamic Azad University, Qom, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Cakir, F., Acar, V., Aydin, M. R. Experimental and numerical ...
  • Fathalla, E., Mihaylov, B. Shear behaviour of deep beams strengthened ...
  • Liu, C., Xu, D., Duanmu, X. Analysis of shear strength ...
  • Tamimi, M. F., Alshannaq, A. A., Abu Qamar, M. a. ...
  • Prayoonwet, W., Koshimizu, R., Ozaki, M., Sato, Y., Jirawattanasomkul, T., ...
  • AlHamaydeh, M., Markou, G., Bakas, N., Papadrakakis, M. AI-based shear ...
  • Zhang, G., Ali, Z. H., Aldlemy, M. S., Mussa, M. ...
  • Baghdadi, A., Babovic, N., Kloft, H. Fuzzy Logic, Neural Network, ...
  • Feng, D.-C., Wang, W.-J., Mangalathu, S., Hu, G., Wu, T. ...
  • Chou, J.-S., Pham, A.-D. Enhanced artificial intelligence for ensemble approach ...
  • Kaloop, M. R., Roy, B., Chaurasia, K., Kim, S.-M., Jang, ...
  • Vapnik, V. N. The Nature of Statistical Learning Theory. ۲nd ...
  • Megahed, K. Prediction and reliability analysis of shear strength of ...
  • Chen, R., Zhang, P., Wu, H., Wang, Z., Zhong, Z. ...
  • Liu, Z., Wu, D., Liu, Y., Han, Z., Lun, L., ...
  • Acar, E., Rais-Rohani, M. Ensemble of metamodels with optimized weight ...
  • Chou, J.-S., Yang, K.-H., Lin, J.-Y. Peak shear strength of ...
  • Hoang, N.-D., Tran, X.-L., Nguyen, H. Predicting ultimate bond strength ...
  • Luo, H., Paal, S. G. Metaheuristic least squares support vector ...
  • Gharehbaghi, S., Yazdani, H., Khatibinia, M. Estimating inelastic seismic response ...
  • Luo, H., Paal, S. G. A novel outlier-insensitive local support ...
  • Prayogo, D., Cheng, M.-Y., Wu, Y.-W., Tran, D.-H. Combining machine ...
  • American Concrete Institute (ACI). ACI ۳۱۸-۲۵: Building Code for Structural ...
  • Canadian Standards Association (CSA). CSA A۲۳.۳:۱۹: Design of Concrete Structures. ...
  • Clark, A. P. Diagonal Tension in Reinforced Concrete Beams. ACI ...
  • Kong, F.-K., Robins, P. J., Cole, D. F. Web Reinforcement ...
  • Smith, K. N., Vantsiotis, A. S. Shear Strength of Deep ...
  • Anderson, N. S., Ramirez, J. A. Detailing of Stirrup Reinforcement. ...
  • Tan, K.-H., Kong, F.-K., Teng, S., Guan, L. High-Strength Concrete ...
  • Oh, J.-K., Shin, S.-W. Shear Strength of Reinforced High-Strength Concrete ...
  • Aguilar, G., Matamoros, A. B., Parra-Montesinos, G. J., Ramírez, J. ...
  • Quintero-Febres, C. G., Parra-Montesinos, G., Wight, J. K. Strength of ...
  • Suykens, J. A. K., De Brabanter, J., Lukas, L., Vandewalle, ...
  • Li, H.-s., Lü, Z.-z., Yue, Z.-f. Support vector machine for ...
  • Widodo, A., Yang, B.-S. Wavelet support vector machine for induction ...
  • Faris, H., Hassonah, M. A., Al-Zoubi, A. M., Mirjalili, S., ...
  • Hoang, N.-D., Pham, A.-D. Hybrid artificial intelligence approach based on ...
  • Cheng, M.-Y., Prayogo, D., Wu, Y.-W. Prediction of permanent deformation ...
  • Prayogo, H. Prediction of Concrete Compressive Strength from Early Age ...
  • نمایش کامل مراجع