Prediction of Shear Capacity of RC Deep Beams Via a Soft Computing Method
سال انتشار: 1405
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 11
فایل این مقاله در 11 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_CEAS-2-1_001
تاریخ نمایه سازی: 12 آذر 1404
چکیده مقاله:
It is well known that the shear capacity of RC deep beams is affected by many mechanical and geometric parameters. The accurate prediction of the shear capacity still stands out as one of the major stumbling blocks in structural engineering practice. Traditional prediction methods have often proven less than precise. On the other hand, artificial intelligence-based methods, particularly those represented by SVMs, have presented themselves as a promising alternative. This research employed an enhanced machine learning technique, known as WLS-SVM, to estimate the shear capacity of reinforced concrete deep beams. In assembling a comprehensive dataset, ۲۱۴ experimental results are obtained from the literature. From selected inputs and outputs, under the supervision of a teaching-learning type approach, a predictive model is derived via WLS-SVM. This model is compared with other AI-based methods and codified design procedures. It presented the best accuracy, with major statistical indicators, including an R² of ۰.۹۸۰۴, showing the superiority of the WLS-SVM approach when compared to other methods. Therefore, the study's results reveal WLS-SVM as a very accurate and viable option for the structural calculation and design of reinforced concrete deep beams.
کلیدواژه ها:
نویسندگان
Masoud Mahmoudabadi
Department of Civil Engineering, Faculty of Engineering, University of Qom, Qom, Iran
Seyed Mohammad Reza Hasani
Department of Civil Engineering, Qom Branch, Islamic Azad University, Qom, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :