AI-Enhanced ۵G-R Architecture for Adaptive Connectivity and Security in High-Mobility Rail Environments
محل انتشار: کنفرانس بین المللی هوش مصنوعی و فناوری های مرتبط
سال انتشار: 1404
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 13
فایل این مقاله در 6 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
ICIRT01_023
تاریخ نمایه سازی: 9 آذر 1404
چکیده مقاله:
Modern high-speed rail systems require ultra-reliable, low-latency, and secure wireless connectivity to ensure operational safety and high-quality passenger services at velocities exceeding ۳۰۰ km/h. Existing technologies such as Global System for Mobile communications-Railway (GSM-R) and Long Term Evolution-Railway (LTE-R) fail to maintain seamless handovers, adaptive resource management, and adequate protection against dynamic threats. This paper proposes an AI-enhanced and security-aware fifth generation for Railway (۵G-R) architecture that integrates recurrent neural network (RNN)-based mobility prediction, dynamic resource partitioning, Multi-access Edge Computing (MEC), and a Secure Connectivity Layer (SCL) for real-time optimization. The system continuously predicts train velocity and signal variations to proactively allocate network slices and pre-configure handovers across edge nodes. Federated learning synchronizes local MEC models with a global cloud controller, enabling continual adaptation to changing conditions. Simulation and field evaluations conducted along a ۱۷۴ km railway segment achieved throughput up to ۲۴۰ Mbps, latency below ۲۰ ms, and ۹۴% handover success, while introducing only ۳.۷% security overhead. Results confirm that Artificial intelligence (AI)-driven resource control and MEC-assisted execution significantly enhance the reliability, continuity, and resilience of ۵G-R communications under high mobility.
کلیدواژه ها:
نویسندگان
Shahpour Rahmani
School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, IRAN
Nasser Yazdani
School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, IRAN