Breast Cancer Detection Algorithms: A Comparative Review of Leading Artificial Intelligence Models

سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 86

فایل این مقاله در 20 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_ISJTREND-2-8_005

تاریخ نمایه سازی: 9 آذر 1404

چکیده مقاله:

Artificial intelligence (AI) has transitioned from proof-of-concept to clinical deployment in breast cancer screening, yet a comprehensive comparison of its performance across modalities and integration modes is needed. This comparative review followed PRISMA guidelines, synthesizing evidence from ۱۷ studies identified through systematic searches of PubMed, Scopus, and Web of Science (۲۰۱۷-۲۰۲۵). Included studies evaluated AI models on clinical breast imaging with pathology-confirmed outcomes, reporting clinically relevant endpoints like cancer detection rate (CDR), recall rate, and positive predictive value (PPV). Studies were critically appraised using QUADAS-۲ and ROBINS-I tools. AI’s clinical impact is contingent on its integration strategy. As an additional reader in double-reading, AI increased CDR by ۰.۷–۱.۶/۱۰۰۰ screens but raised workload by ۴–۶%. In single-read settings, AI-assisted radiologists increased CDR without elevating recall rates. Standalone AI at program scale showed strong discrimination (AUC ~۰.۹۳) but revealed trade-offs, such as lower PPV and under-detection of small tumors at sensitivity-matched thresholds. Multimodal systems (FFDM+DBT+synth۲D) demonstrated technical superiority for lesion localization and, in simulation, potential for substantial workload reduction (≈۴۴%) at fixed sensitivity. Prospective evidence for digital breast tomosynthesis (DBT) shows AI improves radiologist accuracy and reduces interpretation time. AI delivers measurable benefits in breast cancer screening, but its value is maximized when aligned with specific clinical workflows. Multimodal approaches show promise, but future work must prioritize prospective validation with standardized endpoints, interval cancer analysis, and comprehensive subgroup reporting to ensure generalizability and safety.

کلیدواژه ها:

نویسندگان

Tahmineh Ezazi Bojnordi

Gynecology Department, Tehran University of Medical Sciences, Tehran, Iran.

Saba Pourali

Faculty of Medicine, Islamic Azad University of Mashhad, Mashhad, Iran.

Fatemeh Haghighat

Faculty of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran.

Fatemeh Naseri Rad

Student Research Committee, Iran University of Medical Sciences, Tehran, Iran.

Yaseen Padash

Faculty of Medicine, Kurdistan University of Medical Sciences, Kurdistan, Iran.

Ali Sharafkhah

Radiology Department, Hormozgan University of Medical Sciences, Hormozgan, Iran.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :