Predicting Hospitalization in Emergency Department Patients with Acute Abdominal Pain Using AI Analysis of Supine Abdominal Radiographs
محل انتشار: InfoScience Trends، دوره: 2، شماره: 10
سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 89
فایل این مقاله در 11 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_ISJTREND-2-10_001
تاریخ نمایه سازی: 9 آذر 1404
چکیده مقاله:
This study aimed to develop and validate a deep learning model capable of predicting hospitalization in emergency department (ED) patients presenting with acute, non-traumatic abdominal pain using only supine abdominal radiographs (AXRs). In this retrospective diagnostic-prediction study conducted at a tertiary ED, ۱,۰۱۱ patients with a triage diagnosis of unspecified abdominal pain and a corresponding supine AXR were included. After standardized preprocessing—including histogram normalization, CLAHE enhancement, and resizing to ۲۲۴×۲۲۴ pixels—the dataset was split into training (۷۰۸), validation (۱۰۱), and independent test (۲۰۲) subsets using patient-level stratified sampling. A transfer-learning approach with an EfficientNet-B۰ backbone and five-fold cross-validation was employed, and final predictions were generated using a probability-averaged ensemble. Model performance on the independent test set was assessed using standard discrimination metrics, predictive values, and calibration analysis. Hospi-talization prevalence in the test set was approximately ۷۴%. The model achieved an accuracy of ۶۴.۸%, sensitivity ۷۲.۳%, specificity ۴۹.۱%, precision (PPV) ۸۲.۱%, and negative predictive value ۳۴.۷%. Discrimination was moderate, with an AUROC of ۰.۷۴ and AUPRC of ۰.۷۹. Calibration analysis showed slight overestimation of hospitalization risk at intermediate probability levels (۰.۶–۰.۸), with a Brier score of ۰.۲۱. Performance was stable across cross-validation folds. Despite the diagnostic limitations of supine AXRs, the deep learning model extracted meaningful prognostic signals associated with ED hospitalization. The system functioned primarily as a high-precision “rule-in” adjunct, reliably identifying patients likely to require admission, although specificity and negative predictive value remained modest. These findings suggest that AXRs contain underutilized prognostic information, supporting future development of multimodal triage tools integrating imaging with structured clinical data.
کلیدواژه ها:
نویسندگان
Leila Mohsenian
Emergency Medicine Research Centre, Namazi Hospital, Shiraz University of Medical Sciences, Shiraz, Iran.
Mohammad Hossein Fahimi
Emergency Medicine Research Centre, Namazi Hospital, Shiraz University of Medical Sciences, Shiraz, Iran.
Mostafa Moghadas
Emergency Medicine Research Centre, Namazi Hospital, Shiraz University of Medical Sciences, Shiraz, Iran.
Mohamad Ali Nourani
Emergency Medicine Research Centre, Namazi Hospital, Shiraz University of Medical Sciences, Shiraz, Iran.
Hadid Hamrah
Emergency Medicine Research Centre, Namazi Hospital, Shiraz University of Medical Sciences, Shiraz, Iran.
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :