Detection of Fraudulent Transactions in the Cryptocurrency Market Using an Explainable Graph Isomorphism Network
سال انتشار: 1404
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 129
فایل این مقاله در 6 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
ICISE11_097
تاریخ نمایه سازی: 8 آذر 1404
چکیده مقاله:
Cryptocurrency markets are highly vulnerable to fraud due to the lack of comprehensive regulatory frameworks and the pseudonymous nature of transactions. This paper proposes a graph-based learning approach for detecting suspicious transactions in decentralized networks, with a focus on Bitcoin. We evaluate three graph neural network (GNN) models: Graph Convolutional Networks (GCN), Graph Attention Networks (GAT), and Graph Isomorphism Networks (GIN). Experiments on the Elliptic dataset, which contains highly imbalanced data between legitimate and illicit transactions, show that GIN outperforms other models in detecting fraudulent patterns. To enhance interpretability and provide insights into the decision-making process of the models, we integrate explainable AI techniques, specifically using GNNExplainer, which identifies the most influential nodes and features contributing to each fraud prediction. This approach not only enables analysts and regulators to understand why a transaction is classified as suspicious, improving trust and accountability in automated cryptocurrency fraud detection systems, but also achieves a high detection F۱-score of ۹۶.۲۲% for illicit transactions using GIN.
کلیدواژه ها:
نویسندگان
Fatemeh Jalalzaei
Department of Management, Science, and Technology, Amirkabir University of Technology, Tehran, Iran
Akbar Esfahanipour
Department of Industrial Engineering & Management Systems, Amirkabir University of Technology, Tehran, Iran
Ali Reza Keivanimehr
Department of Management, Science, and Technology, Amirkabir University of Technology, Tehran, Iran