Computational Analysis of Natural Convection Heat Transfer in Nanofluids Under a Uniform Magnetic Field Using Levenberg–Marquardt Backpropagation Neural Networks

سال انتشار: 1405
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 1

فایل این مقاله در 22 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JCAM-57-1_004

تاریخ نمایه سازی: 5 آذر 1404

چکیده مقاله:

This study examines heat transfer by natural convection between two infinitely parallel plates in hybrid nanofluids under a homogeneous magnetic field. It seeks to evaluate how well LMBNs predict nonlinear magnetoconvective flows. Using a similarity variable-based mathematical model, the governing partial differential equations are converted to ordinary differential equations. Using the traditional fourth-order Runge–Kutta approach, these equations are then solved numerically to provide reference data. A thorough study examines how temperature and velocity profiles are affected by several crucial dimensionless factors, including the Brownian motion parameter, squeezing number, Hartmann number, Schmidt number, and Eckert number. Results show that while raising the Hartmann number from ۱ to ۳ lowers the maximum velocity by almost ۲۲%, raising the Eckert number from ۰.۱ to ۰.۵ increases the peak temperature by around ۱۸%. With regression correlations exceeding ۰.۹۹۹۹, the LMBNN model has prediction errors as low as ۱۰⁻¹¹ to ۱۰⁻¹², showing better accuracy than standard numerical interpolation techniques. The originality of this study comes from combining traditional numerical analysis with LMBNN training to produce a really accurate, data-driven surrogate model for nanofluid flows under magnetoconvection. This hybrid computational technique provides an effective instrument for forecasting heat transfer behavior in magnetic field-affected engineering applications.

نویسندگان

Muhammad Sulaiman

Department of Mathematics, Abdul Wali Khan University Mardan, Mardan, Khyber Pakhtunkhwa ۲۳۲۰۰, Pakistan

Zawar Hussain

Department of Mathematics, Abdul Wali Khan University Mardan, Mardan, Khyber Pakhtunkhwa ۲۳۲۰۰, Pakistan

Fahad Sameer Alshammari

Department of Mathematics, College of Science and Humanities in Alkharj, Prince Sattam bin Abdulaziz University, Al-Kharj ۱۱۹۴۲, Saudi Arabia

Ghaylen Laouin

College of Engineering and Technology, American University of the Middle East, Egaila ۵۴۲۰۰, Kuwait

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • B. Jalili, A. Rezaeian, P. Jalili, F. Ommi, D. D. ...
  • P. Jalili, B. Jalili, A. Shateri, D. D. Ganji, A ...
  • B. Jalili, P. Jalili, A. Shateri, D. D. Ganji, Rigid ...
  • A. Shafiq, T. Sindhu, Statistical study of hydromagnetic boundary layer ...
  • T. Muhammad, T. Hayat, A. Alsaedi, A. Qayyum, Hydromagnetic unsteady ...
  • P. Jalili, A. A. Azar, B. Jalili, Z. Asadi, D. ...
  • P. S. Narayana, B. Venkateswarlu, B. Devika, Chemical reaction and ...
  • S. Ahmad, F. Chishtie, A. Mahmood, Analytical technique for magnetohydrodynamic ...
  • K. Khanafer, K. Vafai, M. Lightstone, Buoyancy-driven heat transfer enhancement ...
  • S. U. Choi, J. A. Eastman, Enhancing thermal conductivity of ...
  • E. Abu-Nada, Z. Masoud, A. Hijazi, Natural convection heat transfer ...
  • N. S. Akbar, S. Nadeem, N. Noor, Free convective MHD ...
  • M. Turkyilmazoglu, A note on the correspondence between certain nanofluid ...
  • M. Turkyilmazoglu, Flow of nanofluid plane wall jet and heat ...
  • R. Mohebbi, M. Rashidi, Numerical simulation of natural convection heat ...
  • S. B. Abubakar, N. C. Sidik, Numerical prediction of laminar ...
  • N. M. a. Muhammad, N. A. C. Sidik, Utilization of ...
  • J. Buongiorno, Convective transport in nanofluids, ۲۰۰۶ ...
  • D. Nield, A. Kuznetsov, The Cheng–Minkowycz problem for natural convective ...
  • A. Kuznetsov, D. Nield, Natural convective boundary-layer flow of a ...
  • A. J. Chamkha, A. M. Rashad, C. RamReddy, P. Murthy, ...
  • A. Hussain, M. Malik, T. Salahuddin, S. Bilal, M. Awais, ...
  • W. Ibrahim, Magnetohydrodynamic (MHD) boundary layer stagnation point flow and ...
  • M. Rashidi, S. Abelman, N. F. Mehr, Entropy generation in ...
  • M. Sheikholeslami, S. Abelman, D. D. Ganji, Numerical simulation of ...
  • M. Sheikholeslami, M. Gorji-Bandpy, D. Ganji, MHD free convection in ...
  • M. Sheikholeslami, D. Ganji, Heat transfer of Cu-water nanofluid flow ...
  • M. Sheikholeslami, D. D. Ganji, Ferrohydrodynamic and magnetohydrodynamic effects on ...
  • M. Sheikholeslami, M. Gorji-Bandpy, D. D. Ganji, S. Soleimani, MHD ...
  • M. Hatami, D. Ganji, Heat transfer and nanofluid flow in ...
  • P. Jalili, H. Narimisa, B. Jalili, A. Shateri, D. Ganji, ...
  • D. Nield, A. V. Kuznetsov, Thermal instability in a porous ...
  • M. Sheikholeslami, D. D. Ganji, M. Y. Javed, R. Ellahi, ...
  • W. Khan, I. Pop, Boundary-layer flow of a nanofluid past ...
  • M. Sheikholeslami, D. Ganji, Nanofluid hydrothermal behavior in existence of ...
  • B. Manvi, J. Tawade, M. Biradar, S. Noeiaghdam, U. Fernandez-Gamiz, ...
  • V. M. Job, S. R. Gunakala, R. S. R. Gorla, ...
  • M. Venkateswarlu, M. Prameela, O. Makinde, Influence of heat generation ...
  • E. Oborin, H. Irschik, Application of a novel Picard-type time-integration ...
  • Z. Nasri, H. Binous, Rigorous distillation dynamics simulations using a ...
  • H. Binous, A. Aheed, M. M. Hossain, Haber process and ...
  • M. Umar, Z. Sabir, M. A. Z. Raja, J. G. ...
  • I. A.-H. Hassan, Application to differential transformation method for solving ...
  • A. Shateri, M. M. Moghaddam, B. Jalili, Y. Khan, P. ...
  • نمایش کامل مراجع