Spontaneous Pneumothorax Detection in Chest X‑rays using Convolutional Neural Networks

سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 5

فایل این مقاله در 9 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_ISJTREND-2-5_002

تاریخ نمایه سازی: 4 آذر 1404

چکیده مقاله:

This paper evaluates the application of Convolutional Neural Networks (CNNs) for detecting spontaneous pneumothorax in chest X-rays. For this study, we randomly selected ۲۰۰۰ chest X-ray images with pneumothorax from the publicly available National Institutes of Health (NIH) database, which were subsequently allocated to training and testing datasets. To enhance the model's generalization, the images were preprocessed by normalizing, resizing, and augmenting the dataset. The proposed CNN model includes multiple convolutional layers that extract low-level features, followed by max-pooling layers for progressive dimensionality reduction. To combine the extracted features and make predictions, fully connected layers are employed, and a hyperbolic tangent (tanh) activation function is used in the output layer for binary classification. The Adam optimizer is utilized to train the model, and its performance is assessed using standard performance metrics, including accuracy, precision, sensitivity, specificity, and specificity. The results show that the developed CNN-based method outperforms conventional approaches based on machine learning, such as Decision Tree, Random Forest, and SVM.

نویسندگان

Mehrnaz Asghari

Faculty of Medicine, Gorgan University of Medical Sciences, Gorgan, Iran.

Parastou Shahmohamadi

Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

AmirAbbas Safaripour

General Surgery Department, Shiraz University of Medical Sciences, Shiraz, Iran.

Yaseen Padash

Faculty of Medicine, Kurdistan University of Medical Sciences, Kurdistan, Iran.

Sepide Javankiani

General Surgery Department, Tehran University of Medical Sciences, Tehran, Iran.

Zahra Jafarzadeh Jahromi

Faculty of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran.

Zahra Mirzaei

Faculty of Medicine, Tehran Islamic Azad University of Medical Sciences, Tehran, Iran.

Mahdi Rezaalizadeh Seresti

Internal Medicine Department, Islamic Azad University of Medical Sciences, Tehran, Iran.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :