Economic Impact, Clinical Outcomes, and Implementation Challenges of Artificial Intelligence Solutions in Cardiac Care: A Systematic Literature Review

سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 21

فایل این مقاله در 14 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_ISJTREND-2-5_003

تاریخ نمایه سازی: 4 آذر 1404

چکیده مقاله:

Artificial intelligence (AI) is transforming cardiac care by enhancing diagnosis, risk stratification, and patient monitoring. This systematic review synthesizes evidence from ۱۴ studies (۲۰۲۰–۲۰۲۵) on the economic impact, clinical outcomes, and implementation challenges of AI in cardiology. Findings demonstrate that AI-driven interventions—including machine learning-guided atrial fibrillation screening, AI-enhanced cardiac imaging, and remote monitoring—improve disease detection rates and reduce adverse events (e.g., strokes, hospitalizations) while proving cost-effective. For instance, targeted AI screening identified ۲۷–۴۵% more atrial fibrillation cases versus standard care, with incremental cost-effectiveness ratios favoring AI adoption. However, real-world implementation faces barriers such as electronic health record integration costs, clinician adoption resistance, and workflow disruptions. Facilitators like phased rollouts, embedded decision support tools, and real-world performance tracking mitigated these challenges. Methodological limitations include study heterogeneity, reliance on model-based economic analyses, and underreporting of long-term implementation costs. The review highlights a critical gap between AI's theoretical benefits and its practical deployment, emphasizing the need for pragmatic trials, standardized outcome reporting, and stakeholder collaboration. By addressing these challenges, AI can realize its potential to enhance cardiac care efficiency and patient outcomes.

نویسندگان

Amin Zaki Zadeh

Internal Medicine Department, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.

Elnaz Olama

Faculty of Medicine, Georgian National University SEU, Tbilisi ۰۱۶۶, Georgia.

Milad Vosoughi

Department of Internal Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.

Amiryousef Zahedi

Internal Medicine Department at Caucasus Medical Centre (Tbilisi), Tbilisi, Georgia.

Akram Soltanzadeh

Faculty of Medicine, Kurdistan University of Medical Sciences, Kurdistan, Iran

Mohammad hossein Mirjani

Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.

Iman Fereydooni

Department of Internal Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Bajwa J, Munir U, Nori A, Williams B. Artificial intelligence ...
  • Budgen D, Brereton P, Drummond S, Williams N. Reporting systematic ...
  • نمایش کامل مراجع