Comparative Analysis of Artificial Intelligence Methods in Clinical Implementation: A Review of Techniques, Validation Strategies, and Success Metrics
محل انتشار: InfoScience Trends، دوره: 2، شماره: 5
سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 3
فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_ISJTREND-2-5_004
تاریخ نمایه سازی: 4 آذر 1404
چکیده مقاله:
Artificial intelligence (AI) and machine learning (ML) are increasingly integrated into clinical workflows, yet evidence comparing their real-world effectiveness remains fragmented. This review systematically evaluates AI/ML methods deployed in healthcare, focusing on implementation strategies, validation rigor, and performance metrics. To identify the most frequently implemented AI/ML techniques, assess their clinical success rates, and analyze workflow integration challenges across specialties. We reviewed PubMed articles (۲۰۱۹–۲۰۲۴) describing AI/ML clinical applications with quantitative outcomes. Ten studies met inclusion criteria, covering radiology, oncology, and pediatrics. Data were extracted on AI methods, validation types, performance metrics (e.g., sensitivity, AUC), and workflow integration. Descriptive statistics summarized findings. Logistic regression and deep learning (e.g., atlas-matching) were the most specified methods. Logistic regression achieved ۷۱% sensitivity and ۷۷% PPV in epilepsy screening, matching clinician performance. Deep learning models showed >۹۰% retrospective acceptability in radiotherapy planning but lacked prospective metrics. Only ۴۰% of studies reported quantitative outcomes; others emphasized usability or frameworks. Workflow integration (e.g., EHR embedding) was critical but inconsistently detailed. While both traditional and advanced AI methods demonstrate clinical utility, heterogeneous reporting and limited head-to-head comparisons hinder definitive conclusions. Future research should prioritize standardized performance metrics and prospective multi-method evaluations to guide evidence-based adoption.
کلیدواژه ها:
نویسندگان
Asma Soleimani
Department of Sports Science, Faculty of Humanities, Ilam University, Ilam, Iran.
Mobina Mousavi kani
Faculty of Nursing, Mazandaran University of Medical Sciences, Mazandaran, Iran.
Ghazal Radfar
Department of Exercise Physiology, Shahid Chamran University, Ahvaz, Iran.
Shamim Jahani
Research Committee, Babol University of Medical Sciences, Babol, Iran.
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :