From Colon to Uterus: Potential of YOLOv۷ for Real-Time Polyp Detection in Hysteroscopy

سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 35

فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_ISJTREND-2-4_005

تاریخ نمایه سازی: 4 آذر 1404

چکیده مقاله:

Polyp detection is critical in both gastrointestinal and gynecological practice, with early identification significantly reducing cancer risk. While deep learning models like YOLOv۷ have demonstrated high ac-curacy in colonoscopic polyp detection, their application in hysteroscopy remains unexplored. This study systematically reviews YOLOv۷’s performance in colonoscopy and assesses its feasibility for hys-teroscopic polyp detection through a two-phase methodology: (۱) a literature review of YOLOv۷ applica-tions in polyp detection, and (۲) a comparative analysis of technical transferability to hysteroscopy. Find-ings reveal that YOLOv۷ achieves precision up to ۹۸.۸%, recall up to ۹۶.۳%, and real-time processing speeds (~۲۰ ms/frame) in colonoscopy, often enhanced by attention mechanisms and advanced loss functions. However, no studies directly evaluate YOLOv۷ for hysteroscopy, highlighting a critical re-search gap. Technical parallels between colonoscopic and hysteroscopic imaging—such as lesion mor-phology, illumination challenges, and real-time requirements—suggest plausible adaptability, but do-main-specific validation is lacking. Key limitations include the absence of hysteroscopic datasets and benchmarking. This study underscores the need for dedicated research to bridge this gap, proposing YOLOv۷ as a promising candidate for advancing real-time polyp detection in gynecological endoscopy.

نویسندگان

Ghasem Rostami

Department of Urology, Mazandaran University of Medical Sciences, Sari, Iran.

Seyed Hossein Hosseini Berneti

Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran.

Nastaran Habibzadeh

Student Research Committee, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran.

Mohammadali Bazir

Student Research Committee, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :