Artificial Intelligence Applications in Pediatric Oncology Imaging: A Systematic Review of Diagnostic, Prognostic, and Therapeutic Evaluation Tools

سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 23

فایل این مقاله در 12 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_ISJTREND-2-4_006

تاریخ نمایه سازی: 4 آذر 1404

چکیده مقاله:

Artificial intelligence (AI) has emerged as a transformative tool in pediatric oncology imaging, enhancing diagnostic accuracy, prognostic evaluation, and treatment monitoring. This systematic review synthesizes evidence from ۲۲ studies to evaluate AI applications—including machine learning (ML) and deep learning (DL)—in tumor classification, segmentation, radiogenomics, and treatment response assessment. Key findings reveal that convolutional neural networks (CNNs) and radiomics pipelines achieve expert-level performance in classifying pediatric brain tumors (e.g., medulloblastoma, pilocytic astrocytoma) with AUCs >۰.۹۵ and Dice scores up to ۰.۹۶ for segmentation tasks. AI also shows promise in predicting molecular markers (e.g., MYCN, BRAF) and automating longitudinal tumor volume measurements using frameworks like RAPNO. However, challenges persist, such as data scarcity due to the rarity of pediatric cancers, heterogeneity in imaging protocols, and limited external validation. Ethical concerns regarding data privacy and model interpretability further hinder clinical adoption. Multi-institutional collaborations (e.g., Children’s Brain Tumor Network) and explainable AI (XAI) tools (e.g., Grad-CAM) are proposed to address these limitations. Future research should prioritize large-scale, prospective studies, standardized reporting frameworks (e.g., TRIPOD-AI), and integration of AI into clinical workflows. While AI demonstrates significant potential to revolutionize pediatric oncology imaging, overcoming current barriers is essential for robust, generalizable, and ethically sound implementations.

نویسندگان

Elham Shafighi Shahri

Children and Adolescents Health Research Center, Research Institute of Cellular and Molecular Science in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran.

Akram Ehsasatvatan

Department of pediatrics, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran.

Mohammad Salavatizadeh

Department of pediatrics, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran.

Somayeh Talaeepur

Children Growth Disorder Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Dalboni da Rocha JL, Lai J, Pandey P, Myat PSM, ...
  • Ng CK. Diagnostic performance of artificial intelligence-based computer-aided detection and ...
  • نمایش کامل مراجع