Artificial Intelligence in Radiology: Perceptions, Adoption Barriers, and Trust Among Iranian Radiologists in a Global Context

سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 106

فایل این مقاله در 12 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_ISJTREND-2-3_003

تاریخ نمایه سازی: 4 آذر 1404

چکیده مقاله:

Artificial intelligence (AI) is transforming radiology globally, yet adoption varies significantly across regions due to cultural, educational, and infrastructural factors. This study examines Iranian radiologists’ perceptions, trust, and barriers to AI adoption through a cross-sectional survey of ۱۲۸ professionals (radiologists, residents, and technologists) from diverse healthcare settings. Results revealed cautious optimism: ۷۸.۱% anticipated AI would significantly impact radiology within a decade, primarily as a workflow optimizer (۶۹.۵%) or second reader (۷۳.۴%). However, critical barriers emerged, including lack of formal AI training (۷۷.۳% had none), low confidence in AI tools (mean score: ۲.۳۵/۵), and concerns about reliability (۵۲.۳%) and legal accountability (۴۶.۱%). Only ۲۹.۷% trusted AI-generated reports (۹۰% accuracy), with ۸۳.۶% demanding mandatory human oversight. Demographic differences were notable; younger professionals (<۳۵ years) were more optimistic about AI’s augmentative role (p < ۰.۰۵). These findings align with trends in low- and middle-income countries (LMICs), where limited training and infrastructure hinder adoption compared to high-income regions. The study highlights urgent needs: integrating AI into radiology curricula, pilot programs to build trust, and regulatory frameworks addressing transparency and liability. By addressing these challenges, Iran could leverage AI’s potential while navigating LMIC-specific constraints. This research contributes to global discourse on equitable AI adoption by contextualizing Iran’s position alongside international benchmarks.

نویسندگان

Hussein Soleimantabar

Department of Radiology, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

Ali Mahdavi

Department of Radiology, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

Mohsen Qorbani

Department of Radiology, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

Majid Madanipour

Department of Radiology, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

Mohammad Ali Tasharrofi

Department of Radiology, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

Bahareh Okhovvat

Department of Radiology, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :