Enhancing Clinical Documentation with AI: Reducing Errors, Improving Interoperability, and Supporting Real-Time Note-Taking
محل انتشار: InfoScience Trends، دوره: 2، شماره: 3
سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 59
فایل این مقاله در 13 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_ISJTREND-2-3_009
تاریخ نمایه سازی: 4 آذر 1404
چکیده مقاله:
The increasing administrative burden in healthcare, particularly in clinical documentation, has driven research into artificial intelligence (AI)-powered solutions to enhance transcription accuracy, improve interoperability in electronic health record (EHR) systems, and enable real-time clinical note generation. This study systematically reviewed ۱۴ relevant studies to evaluate the role of AI technologies, including natural language processing (NLP) and automatic speech recognition (ASR), in addressing these challenges. Results showed that AI significantly reduces transcription errors when combining ASR with domain-specific NLP models, such as ClinicalBERT, and fine-tuned large language models (LLMs) like GPT-۴, by improving context understanding and terminology accuracy. Real-time clinical note generation was commonly achieved using hybrid extractive-abstractive summarization techniques and structured templates, such as SOAP (Subjective, Objective, Assessment, Plan) notes, with enhanced usability and time savings demonstrated in clinical settings. Additionally, systems employing semantic knowledge graphs and ontologies (e.g., UMLS) facilitated greater standardization and interoperability between disparate EHR systems. However, critical challenges were noted with hallucination risks in text generation, data privacy concerns, and low clinician trust in automated tools. Evaluation metrics such as ROUGE, BERTScore, and domain-specific measures (e.g., DeepScore) revealed variability in the quality and factual consistency of AI-generated notes. This review highlights the potential of AI to alleviate documentation burdens, though further advances in real-time integration, accuracy, and user acceptability are required for widespread adoption in healthcare environments.
کلیدواژه ها:
نویسندگان
Saeed Saadat
Department of Epidemiology, University of North Carolina at Charlotte, ۹۲۰۱, University City Boulevard, Charlotte, NC, ۲۸۲۲۳, USA.
Majid Khalilizad Darounkolaei
Department of Orthopedics, Clinical Research Center of Shahid Beheshti Hospital, Babol, Iran.
Mohsen Qorbani
Department of Radiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
Atefe Hemmat
Department of Biology, Faculty of Sciences, Central Tehran Branch, Islamic Azad University, Tehran, Iran.
Sadaf Hariri
Research Committee, Faculty of Medicine, Urmia university of Medical Sciences, Urmia, Iran.
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :