Building the Bridge Between Information Science and Data Science: Understanding Their Overlap and Differences

سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 7

فایل این مقاله در 9 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_ISJTREND-1-2_002

تاریخ نمایه سازی: 4 آذر 1404

چکیده مقاله:

Information science and data science are two distinct yet interrelated academic fields that often lead to confusion regarding their scope and application. While they share a common goal of deriving meaningful insights from data, they differ significantly in their methodologies and theoretical foundations. Information science primarily focuses on the management, organization, and retrieval of information. It has various topics, including information architecture, knowledge management, and the design of information retrieval systems. Professionals in this field work to ensure that information is accessible, accurate, and secure, playing a crucial role in the maintenance of databases and digital archives. In contrast, data science is centered around extracting insights from large and complex datasets using statistical analysis, machine learning algorithms, and data visualization techniques. This interdisciplinary field draws from mathematics, computer science, and domain-specific knowledge to study diverse problems and generate innovative solutions. Data scientists analyze patterns within data to inform decision-making processes across various industries. This article explores the nuanced differences between information science and data science while also highlighting their interconnectedness. Ultimately, it posits that data science has a broader scope that includes information science alongside other relevant disciplines. By understanding these distinctions and overlaps, professionals can better navigate their roles within these evolving fields.

نویسندگان

Marcin Kozak

Department of Media and Social Communication, University of Information Technology and Management in Rzeszow, Poland

Hamid Reza Saeidnia

Department of Information and Knowledge Science, Faculty of Management and Economics, Tarbiat Modares University, Tehran, Iran.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Virkus S, Garoufallou E. Data science from a library and ...
  • Cao L. Data science: a comprehensive overview. ACM Computing Surveys ...
  • Skiena SS, Skiena SS. What is Data Science? The Data ...
  • Cetinkaya-Rundel M, Danyluk A, Forbes J, Posner M, editors. Building ...
  • Sarker IH. Data Science and Analytics: An Overview from Data-Driven ...
  • Hevner AR, March ST, Park J, Ram S. Design science ...
  • Provost F, Fawcett T. Data science and its relationship to ...
  • Marchionini G. Information science roles in the emerging field of ...
  • Donoho D. ۵۰ years of data science. Journal of Computational ...
  • Zins C. Conceptions of information science. Journal of the American ...
  • Sofia Jonathan G. Information Science in the Analytics of Healthcare ...
  • Klevak J, Livnat J, Suslava K. A practical approach to ...
  • Isobe T, Okada Y. Chemicals Informatics: search structural factors and ...
  • Dockery J. C۳: Information science in uniform. BioSystems. ۱۹۹۶;۳۸(۲-۳):۲۵۳-۷ ...
  • Rajagopal S. Data science: Recent developments and future insights. Deep ...
  • Cleveland WS. Data science: an action plan for expanding the ...
  • Cleveland WS. The elements of graphing data: Wadsworth Publ. Co.; ...
  • Cleveland WS. Visualizing data: Hobart press; ۱۹۹۳ ...
  • Alvarado RC. Data Science from ۱۹۶۳ to ۲۰۱۲. arXiv preprint ...
  • Nawaz S, Saleem M, Kusmartsev F, Anjum DH. Approach to ...
  • Zhu Y, Xiong Y. Defining data science. arXiv preprint arXiv:۱۵۰۱۰۵۰۳۹. ...
  • Guo L, Song R, Wu J, Xu Z, Zhao F. ...
  • Han Y. An Investigation of Machine Learning Applications in the ...
  • Thomas J, Patidar P, Vedi KV, Gupta S. An analysis ...
  • Javed S, Akhtar R, editors. Data driven Approaches for Demand ...
  • Choudhary R, Mantri SP, Barse MVA, Chitnis S. Leveraging AI ...
  • Yuan S, Qiu Z, Yuan L, Chen H, editors. Security ...
  • Crowston K, Myers MD. Information technology and the transformation of ...
  • Mayernik MS. Data science as an interdiscipline: Historical parallels from ...
  • Rizk A, Elragal A. Data science: developing theoretical contributions in ...
  • Wang L. Twinning data science with information science in schools ...
  • Ortiz-Repiso V, Greenberg J, Calzada-Prado J. A cross-institutional analysis of ...
  • Ramalho RAS, Sant'Ana RCG, Paletta FC. Contributions of information science ...
  • Poole AH. Leading the way: A new model for data ...
  • Song I-Y, Zhu Y. Big data and data science: Opportunities ...
  • Virkus S, Garoufallou E. Data science and its relationship to ...
  • Wu D, Xu H, Sun Y, Lv S. What should ...
  • Song IY, Zhu Y. Big data and data science: what ...
  • Bossaller J, Million AJ. The research data life cycle, legacy ...
  • نمایش کامل مراجع