Enhancing Healthcare Efficiency in Iran: A Comprehensive Analysis of Health-Oriented APIs Using Machine Learning Techniques

سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 14

فایل این مقاله در 33 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_ISJTREND-1-2_006

تاریخ نمایه سازی: 4 آذر 1404

چکیده مقاله:

This study examines the efficiency of health-oriented APIs in Iran, analyzing their performance across various categories. Using a combined approach of Data Envelopment Analysis (DEA), machine learning techniques, and statistical analysis, we evaluated ۱۴۹ APIs to determine their efficiency scores and identify areas for improvement.The DEA analysis revealed that many APIs, particularly those in the "Health and Wellness" and "Genetic Data" categories, operate at high-efficiency levels. The scores were calculated using an input variable derived from Principal Component Analysis (PCA) and Exploratory Factor Analysis (EFA), while the output was determined using the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS). The Kruskal-Wallis test showed significant differences in efficiency scores among the macro-categories, with "Clinical and Patient Management" demonstrating notable superiority. Pairwise comparisons confirmed these differences, indicating the need for improvement in some categories.We applied a k-means clustering algorithm to classify the APIs into efficiency gradients. Validation through logistic regression confirmed the significant influence of categories on efficiency, supported by SHAP analysis. The results suggest that "Patient Management" APIs are the most efficient.Future implications include optimizing less efficient APIs and adopting more advanced techniques. These findings provide valuable guidance for improving technological performance and optimizing efficiency in the healthcare sector, contributing to a more innovative and responsive system.

کلیدواژه ها:

نویسندگان

Zahra Mohammadzadeh

Health Information Management Research Center, Kashan University of Medical Sciences, Kashan, Iran

Agostino Marengo

Department of Agricultural Sciences, Food, Natural Resources, and Engineering, University of Foggia, Via Napoli ۲۵, ۷۱۱۲۲ Foggia, Italy.

Vito Santamato

Department of Clinical and Experimental Medicine, University of Foggia, Viale Luigi Pinto, ۷۱۱۲۲ Foggia, Italy.

Mohammad Ali Raayatpanah

Department of Mathematics, Faculty of Mathematical Sciences and Computer, Kharazmi University, Tehran. Iran.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Bagirov AM, Aliguliyev RM, Sultanova N. Finding compact and well-separated ...
  • Banker RD, Charnes A, Cooper WW. Some models for estimating ...
  • Chang H, Kim D, Shim J. Attributes of user-centered evaluation ...
  • Chen J, Wan Z, Zhang F, Park NK, He X, ...
  • Tao D, LeRouge CM, Deckard G, De Leo G. Consumer ...
  • Dullabh P, Hovey L, Heaney-Huls K, Rajendran N, Wright A, ...
  • Kharbat FF, Razmak J, Al Shawabkeh AA. Proposing UAE-patient portal: ...
  • Gordon WJ, Rudin RS. Why APIs? Anticipated value, barriers, and ...
  • Hatami-Marbini A, Hekmat S, Agrell PJ. A strategy-based framework for ...
  • Hecke TV. Power study of anova versus Kruskal-Wallis test. Journal ...
  • Hermes S, Riasanow T, Clemons EK, Böhm M, Krcmar H. ...
  • Wu J, Yu W. Optimization and improvement based on K-Means ...
  • Joliffe IT, Morgan BJ. Principal component analysis and exploratory factor ...
  • Shahapure KR, Nicholas C. Cluster quality analysis using silhouette score. ...
  • Kalkhajeh SG, Aghajari A, Dindamal B, Shahvali-Kuhshuri Z, Faraji-Khiavi F. ...
  • Li ZG, Wei H. A comprehensive evaluation of China's TCM ...
  • Bugaj M, Wrobel K, Iwaniec J. Model explainability using SHAP ...
  • Mirmozaffari M, Yazdani R, Shadkam E, Khalili SM, Mahjoob M, ...
  • Mohammadzadeh Z, Saeidnia HR, Ghorbi A. Identification and classification of ...
  • Pohan AB, Hadi SW, Rahmatullah S, Zuama RA, Rifai A, ...
  • Ajeesh SS, Indu MS, Sherly E. Performance analysis of classification ...
  • Upadhyay S, Dwivedi A, Verma A, Tiwari V. Heart Disease ...
  • Saeidnia HR, Ghorbi A, Kozak M, Abdoli S. Web-based application ...
  • Salarvand S, Samadbeik M, Tarrahi MJ, Salarvand H. Quality of ...
  • Samadbeik M, Ahmadi M, Mohammadi A, Mohseni Saravi B. Health ...
  • Santamato V, Esposito D, Tricase C, Faccilongo N, Marengo A, ...
  • Santamato V, Tricase C, Faccilongo N, Iacoviello M, Pange J, ...
  • Santamato V, Tricase C, Faccilongo N, Marengo A, Pange J. ...
  • Schreiber JB. Issues and recommendations for exploratory factor analysis and ...
  • Taiser SM, Islam MT, Hossain MK, Hossain MS. A Doctor ...
  • Toloo M, Emrouznejad A, Moreno P. A linear relational DEA ...
  • Topacan U, Basoglu AN, Daim TU. AHP application on evaluation ...
  • Zhao H. Design and Implementation of an Improved K‐Means Clustering ...
  • نمایش کامل مراجع