Deep Reinforcement Learning for Resilient Predictive Control in Self-Healing Smart Grids
سال انتشار: 1404
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 95
فایل این مقاله در 5 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
NHSTE03_008
تاریخ نمایه سازی: 4 آذر 1404
چکیده مقاله:
The transition to self-healing smart grids demands advanced control strategies to ensure resilience against faults, disturbances, and cyber-physical threats. This paper proposes a deep reinforcement learning (DRL)-based resilient predictive control (DRL-RPC) framework, enabling autonomous fault recovery, voltage stabilization, and adaptability to dynamic grid conditions. Using a Proximal Policy Optimization (PPO) algorithm, the DRL agent is trained on a large-scale dataset exceeding ۱۵,۰۰۰ samples, capturing realistic grid dynamics. Extensive simulations demonstrate that our approach outperforms traditional methods, achieving faster recovery, improved voltage stability, and reduced load shedding. The framework’s scalability and robustness position it as a transformative solution for next-generation smart grids.
کلیدواژه ها:
نویسندگان
Masoumeh Ghafari
Babol Noshirvani University of Technology, Babol
Behrooz Rezaie
Babol Noshirvani University of Technology, Babol