Machine Learning and Deep Learning-Based Feasibility Study of Persian Gulf to Tehran Water Transfer

فایل این در 35 صفحه با فرمت PDF قابل دریافت می باشد

  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این :

چکیده :

Tehran is facing an escalating water crisis driven by rapid population growth, declining groundwater reserves, and long-term climatic stress. These pressures have created an urgent need for unconventional and sustainable water-supply strategies. One of the most ambitious proposals is the large-scale transfer of desalinated water from the Persian Gulf to Tehran. Although the project requires substantial energy, advanced infrastructure, and significant capital investment, its potential to enhance long-term water security makes its assessment essential. This study evaluates the feasibility of the Persian Gulf–Tehran water-transfer project using advanced Machine Learning (ML) and Deep Learning (DL) models to provide a more accurate and data-driven analysis than traditional engineering approaches. A comprehensive dataset—including climatic variables, elevation profiles, pipeline behavior, energy loads, desalination efficiency, and cost parameters—was analyzed using algorithms such as Random Forest, XGBoost, LSTM networks, and convolutional neural networks. These models were employed to forecast pumping requirements, simulate pressure fluctuations, predict operational risks, and assess system stability under future climate scenarios. Results indicate that DL architectures substantially improve the accuracy of predicting energy losses, pressure variations, and seasonal operational patterns. Furthermore, scenario-based analysis shows that, despite its high cost, the project remains technically feasible and strategically valuable when supported by optimized pumping schedules, renewable-energy integration, and adaptive environmental management. A cost assessment shows that the final all-in price of delivering desalinated water to Tehran is approximately 3–4 USD/m³ under normal conditions, and 6–9 USD/m³ under severe U.S. sanctions, including desalination, ~1,200 km of pumping, 1,200 m elevation lift, O&M, environmental mitigation, and levelized capital costs. Overall, the study concludes that, while economically intensive, the project represents a strategically significant option for ensuring Tehran’s long-term water security.

نویسندگان

محمد سهرابی

PhD In Urban Planning Geography

مراجع و منابع این :

لیست زیر مراجع و منابع استفاده شده در این را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود لینک شده اند :
  • 1. Mohammad, S. (2025, November 7). From Drought to Resilience: AI-Based ...
  • 2. Mohammad, S. (2025). Why Is Iran Drier and Hotter than ...
  • 3. Mohammad, S. (2025). AI-Driven Prediction of Compound Drought–Dust–Heatwave Events: Comparative ...
  • 4. Sohrabi, M. (2025). Machine Learning-Based Comparative Analysis of Human and ...
  • 5. Hosseini, S., Rezaei, M., & Tabari, H. (2020). Energy Optimization ...
  • 6. Rezaei, M., Hosseini, S., & Mohammad, S. (2020). Operational Cost ...
  • 7. Tabari, H., & Willems, P. (2018). Climate Change and Water ...
  • 8. UNEP. (2022). Environmental Sensitivity Assessment for Large-Scale Water Infrastructure Projects. ...
  • 9. WHO. (2021). Water Safety and Environmental Risk Management in Urban ...
  • 10. Bozorg-Haddad, O., & Loáiciga, H. A. (2020). Resilience Theory and ...
  • 11. Goharian, E., & Burian, S. J. (2018). Socio-Hydrology and Urban ...
  • 12. Fathian, M., Kazemian, S., & Rezaei, M. (2021). Urban Water ...
  • 13. Kazemian, S., Fathian, M., & Tabari, H. (2022). Urbanization and ...
  • 14. Najafi, M., Rezaei, M., & Hosseini, S. (2019). Hydraulic Modeling ...
  • 15. Rahimi, S., Hosseini, S., & Mohammad, S. (2021). High-Resolution Hydrological ...
  • 16. Zuo, A., Tabari, H., & Rezaei, M. (2020). Desalination and ...
  • 17. Sadegh, M., Rezaei, M., & Hosseini, S. (2021). Integrating AI ...
  • 18. World Bank. (2020). Cost and Economic Assessment of Large-Scale Water ...
  • 19. Rahimi, S., Fathian, M., & Rezaei, M. (2021). Interpolation Techniques ...
  • 20. Hosseini, S., Mohammad, S., & Rezaei, M. (2020). Pipeline Operational ...
  • 21. Tabari, H., & Willems, P. (2018). Climate Projections for Water ...
  • 22. Bozorg-Haddad, O., Loáiciga, H. A., & Goharian, E. (2020). Adaptive ...
  • 23. Rezaei, M., Hosseini, S., & Tabari, H. (2020). Energy-Efficient Pumping ...
  • 24. Barati, M., Fathian, M., & Kazemian, S. (2021). AI-Based Forecasting ...
  • 25. Karimi, P., Hosseini, S., & Rezaei, M. (2019). Long-Term Groundwater ...
  • 26. Khademi, H., Tabari, H., & Mohammad, S. (2020). Machine Learning ...
  • 27. Eslamian, S., & Rezaei, M. (2019). Hydrological Simulation of Inter-Basin ...
  • 28. Mirzaei, M., Kazemian, S., & Fathian, M. (2022). Environmental Risk ...
  • 29. Khodabakhshi, M., Mohammad, S., & Rezaei, M. (2021). Integrated Energy-Cost ...
  • 30. Taghizadeh, H., Hosseini, S., & Mohammad, S. (2020). Scenario-Based Desalination ...
  • 31. Mohammad, S. (2025a). Topography, Drought, and Energy Demand: Implications for ...
  • 32. Mohammad, S. (2025b). Comparative Analysis of Water Scarcity in Tehran ...
  • 33. Mohammad, S. (2025c). Predictive Modeling for Mega Water-Transfer Systems: AI ...
  • 34. Sohrabi, M. (2025). Scenario-Based Machine Learning Analysis for Pipeline Operations ...
  • 35. Jalali, M., Kazemian, S., & Tabari, H. (2021). Water Security ...
  • 36. Moradi, A., Hosseini, S., & Rezaei, M. (2020). Machine Learning ...
  • 37. Ebrahimi, P., Tabari, H., & Mohammad, S. (2019). Predicting Drought-Induced ...
  • 38. Ahmadi, H., Rezaei, M., & Hosseini, S. (2020). Optimization of ...
  • 39. Rahimian, M., Kazemian, S., & Tabari, H. (2022). Environmental Scenario ...
  • 40. Mohammadi, S., Hosseini, S., & Rezaei, M. (2021). Adaptive Water ...
  • 41. Sohrabi, M. (2025). Machine Learning and Deep Learning-Based Feasibility Study ...
  • نمایش کامل مراجع