A Review of Machine Learning Algorithm Development Methods for Predicting the Mechanical Properties of ۳D Printed Components and Optimizing Parameters
سال انتشار: 1404
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 2
فایل این مقاله در 9 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
EMGBC09_003
تاریخ نمایه سازی: 1 آذر 1404
چکیده مقاله:
Additive Manufacturing (AM) technology has been widely used in various industries due to its high flexibility in designing and producing complex components. However, the precise control of process parameters and the prediction of the mechanical properties of printed components have always been challenging. This paper reviews the role of Machine Learning (ML) in optimizing printing parameters (such as laser power, scan speed, and layer thickness) and predicting the quality of components. Predictive models for defects such as porosity and cracking are also analyzed. A comparison of data-driven approaches, including supervised learning and reinforcement learning, demonstrates that each has unique advantages under specific conditions. Finally, a perspective on the future integration of AM and Artificial Intelligence (AI) in the design of new materials is presented.
کلیدواژه ها:
Additive Manufacturing ، Design and Production of Complex Components ، Process Parameter Control ، Mechanical Properties
نویسندگان
Hassan Hosseini
M.Sc. in Materials Engineering, Islamic Azad University, Science and Research Branch, Tehran, Iran
Mohammad Khezli
M.Sc. in Materials Engineering, University of Kashan, Kashan, Iran
Sepehr Shadmani
Ph.D. Candidate in Advanced Materials, K. N. Toosi University of Technology, Tehran, Iran
Vahid Babakhani Saleh
BS.c. in Materials Science and Metallurgical Engineering, Arak University, Arak, Iran