Machine Learning-Based Comparative Analysis of Human and Economic Losses from Cold-Climate Mountain Floods: Case Studies of Zarindasht–Firouzkouh (Iran, 2022) and Houghton, Michigan (2018)

فایل این در 26 صفحه با فرمت PDF قابل دریافت می باشد

  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این :

چکیده :

Core Problem:Cold-climate mountain floods pose increasing threats to human life and economic stability, particularly in regions affected by short-duration monsoonal rainfall. In July 2022, the Zarindasht–Firouzkouh flood in northern Iran caused significant destruction, including 15 fatalities and severe infrastructural losses. Similarly, the Houghton, Michigan flood (2018) inflicted major damage due to extreme rainfall and runoff on steep terrain. Despite different socio-economic contexts, both disasters reveal gaps in early-warning capacity and adaptive planning. Understanding their similarities and differences is crucial for improving resilience in mountainous environments.Approach:This study applies a machine learning–based comparative framework integrating GIS, remote sensing, and socio-economic datasets. Predictive algorithms—Random Forest (RF), Gradient Boosting (GBM), and XGBoost—were trained on hydrological, topographical, and land-use variables to estimate flood severity and potential losses. Spatial and temporal data from Sentinel-2, DEMs, and disaster databases were analyzed to identify critical risk drivers in both regions.Key Findings:Model performance achieved high predictive accuracy (R² = 0.91; RMSE = 0.23). The most influential predictors included precipitation anomaly, slope, vegetation cover, and population density. While physical exposure was higher in Houghton, social vulnerability was substantially greater in Zarindasht–Firouzkouh due to limited preparedness, infrastructure fragility, and lack of insurance coverage.Impact:This comparative analysis highlights the need for AI-enabled disaster governance to enhance adaptive capacity in mountain communities. By merging predictive analytics with socio-hydrological data, the framework supports data-driven policy design and cross-country learning for sustainable flood resilience in cold-climate regions.

نویسندگان

محمد سهرابی

Phd In Urban Planning Geograaphy

مراجع و منابع این :

لیست زیر مراجع و منابع استفاده شده در این را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود لینک شده اند :
  • 1. Abbas, A., Rahman, M., & Kumar, D. (2023). Hybrid deep ...
  • 2. Ahmad, S., & Simonovic, S. P. (2020). System dynamics modeling ...
  • 3. Allen, M. R., & Ingram, W. J. (2021). Constraints on ...
  • 4. Annis, A., & Nardi, F. (2021). Machine learning and flood ...
  • 5. Biggs, E. M., Bruce, E., Boruff, B., Duncan, J. M., ...
  • 6. Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32. ...
  • 7. Chen, T., & Guestrin, C. (2016). XGBoost: A scalable tree ...
  • 8. Chow, V. T., Maidment, D. R., & Mays, L. W. ...
  • 9. Cutter, S. L., Boruff, B. J., & Shirley, W. L. ...
  • 10. Das, S., & Gupta, A. (2022). Integrating machine learning in ...
  • 11. Dee, D. P., et al. (2011). The ERA-Interim reanalysis: Configuration ...
  • 12. Dutta, D. (2020). Machine learning for disaster risk reduction: A ...
  • 13. Fang, K., & Shen, C. (2020). Near-real-time hydrological modeling using ...
  • 14. Folke, C., Biggs, R., Norström, A., Reyers, B., & Rockström, ...
  • 15. Fotheringham, A. S., Brunsdon, C., & Charlton, M. (2002). Geographically ...
  • 16. Ghorbanzadeh, O., & Blaschke, T. (2021). Multi-hazard susceptibility assessment using ...
  • 17. Gupta, H. V., Kling, H., Yilmaz, K. K., & Martinez, ...
  • 18. Hoff, H. (2011). Understanding the nexus: Background paper for the ...
  • 19. Islam, T., & Sado, K. (2020). Flood hazard mapping using ...
  • 20. Liu, D., Zhang, Z., & Xie, J. (2021). Predictive flood ...
  • 21. Lu, D., & Weng, Q. (2007). A survey of image ...
  • 22. Mishra, A., & Sahu, R. (2019). Application of random forest ...
  • 23. Mohammad, S. (2025, November 7). From Drought to Resilience: AI-Based ...
  • 24. Mohammad, S. (2024). Smart and Energy-Self-Sufficient Cities: Urban Planning Pathways ...
  • 25. Mosavi, A., Ozturk, P., & Chau, K. W. (2020). Flood ...
  • 26. Najafi, M. R., & Moazami, M. (2021). Assessing flood vulnerability ...
  • 27. OECD. (2021). Strengthening climate resilience in mountainous areas. OECD Publishing. ...
  • 28. Rahmati, O., Falah, F., & Pourghasemi, H. R. (2019). Flood ...
  • 29. Rasul, G. (2016). Managing the food, water, and energy nexus ...
  • 30. Shafapour Tehrany, M., Pradhan, B., & Jebur, M. N. (2014). ...
  • 31. Sun, Z., & Xie, J. (2020). The role of AI ...
  • 32. Tayefi, B., et al. (2022). Flood hazard zoning and climate ...
  • 33. UNDRR. (2022). Global assessment report on disaster risk reduction 2022. ...
  • 34. UN-Water. (2022). World Water Development Report 2022: Groundwater – Making ...
  • 35. Ward, P. J., et al. (2020). Using machine learning for ...
  • 36. World Bank. (2023). Water in the changing climate: A global ...
  • 37. Xu, H., & Zhang, L. (2022). A hybrid deep learning ...
  • 38. Zhang, Y., & Chen, Q. (2021). Disaster governance and climate ...
  • 39. Zhou, C., & Deng, J. (2021). Evaluating climate-induced flood vulnerability ...
  • 40. Zhu, X., & Wood, E. F. (2022). Integrating AI and ...
  • نمایش کامل مراجع