Annular Air Gap Area Impact on Flame Regime Transition and Combustion in Low-chamber-pressure Air Heater

سال انتشار: 1405
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 77

فایل این مقاله در 19 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JAFM-19-1_004

تاریخ نمایه سازی: 23 آبان 1404

چکیده مقاله:

This study combines high-speed shadowgraph imaging with numerical simulations to systematically examine the effect of the annular air gap area on the spray combustion characteristics of an alcohol-liquid-oxygen-air tripropellant coaxial direct-flow injector in an air heater operating under a low chamber pressure of ۱.۲ MPa. The underlying mechanisms of ignition, flame structure, injector atomization, and combustion stability are analyzed in detail. Results show that the annular air gap area has a significant impact on flame morphology and combustion performance. When the air gap area is relatively large (corresponding to an annular gap spacing of ۱.۹۵ mm), an elongated attached flame forms, and ignition is completed within ۱۹ ms. Although the short ignition time and favorable flame stability are advantageous, the combustion efficiency is relatively low (۹۱%), and the nozzle and throat are prone to ablation. When the air gap area is moderate (۱.۴۱ mm spacing), a conical flame develops, exhibiting the longest ignition time (۹۹۷.۴ ms) and a stratified structure consisting of fuel-rich combustion at the core and fuel-lean combustion at the periphery. This configuration demonstrates good stability. When the air gap area is small (۱.۱۰ mm spacing), a lifted flame forms. Although mixing and ignition occur relatively quickly (around ۳۸۶.۴ ms), stability is poor, with large chamber pressure fluctuations and a high risk of extinction once the air velocity exceeds the critical threshold. Reducing the air gap area effectively shortens the liquid oxygen atomization distance by ۵۰% and significantly improves evaporation efficiency; however, excessive reduction promotes ignition-quenching-reignition cycles and worsens flame instability. Further analysis indicates that flame stability is primarily governed by the ratio of injection velocity to flame propagation velocity. When this ratio exceeds a critical value, shear-layer instability arises, increasing the amplitude of chamber pressure fluctuations by up to ۲۰۰%. This research provides a theoretical foundation for optimizing injector design and improving combustion stability control in air heaters. The insights gained are essential for enhancing ignition reliability and thermal protection in hypersonic applications.

نویسندگان

K. Wang

Advanced Propulsion Technology Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, ۴۱۰۰۷۳, China

C. B. Shen

Advanced Propulsion Technology Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, ۴۱۰۰۷۳, China

B Fan

Advanced Propulsion Technology Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, ۴۱۰۰۷۳, China

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :