Artificial Intelligence in Early Detection of Skin Cancer through Dermoscopic Image Analysis
سال انتشار: 1405
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 38
فایل این مقاله در 11 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_EJCMPR-5-1_006
تاریخ نمایه سازی: 18 آبان 1404
چکیده مقاله:
Skin cancer, particularly melanoma, poses significant health risks globally. Early detection is crucial for effective treatment and improved patient outcomes. Dermoscopy, a non-invasive imaging technique, has enhanced dermatologists' ability to examine skin lesions. Recent advancements in artificial intelligence (AI), especially deep learning, have shown promising results in automating the analysis of dermoscopic images for skin cancer detection. AI models, particularly convolutional neural networks (CNNs), have been trained on large datasets of dermoscopic images, achieving diagnostic accuracies comparable to or surpassing those of experienced dermatologists. These AI systems can assist in identifying malignant lesions, thereby aiding in early diagnosis and reducing the workload on healthcare professionals. However, challenges remain, including the need for diverse and representative datasets, addressing biases in AI models, and ensuring the clinical applicability of these technologies. This paper reviews the current state of AI applications in dermoscopic image analysis for skin cancer detection, discusses the methodologies employed, evaluates the performance of various AI models, and examines the potential impact on clinical practice. The integration of AI into dermatology holds the promise of enhancing diagnostic accuracy, improving patient outcomes, and optimizing healthcare resources.
کلیدواژه ها:
نویسندگان
Ali Azarkaman
M.Sc. in Biomedical Engineering from Islamic Azad University, Central Tehran Branch
Ali Jamali Nazari
Ph.D. in Medical Radiation Engineering from Islamic Azad University, Central Tehran Branch
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :