Predicting the Mortality of Patients with Leukemia Using Artificial Intelligence

سال انتشار: 1400
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 1

فایل این مقاله در 8 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJA-2-1_005

تاریخ نمایه سازی: 18 آبان 1404

چکیده مقاله:

Several factors must be considered when predicting mortality in patients with hematological malignancies. These factors and characteristics complicate the ability of doctors’ and nurses to predict the prognosis of these diseases. This study aimed to develop a mortality prediction model for leukemia patients using artificial intelligence and a nearest-neighbor genetic algorithm. This retrospective study used the medical records of ۲۳۵ patients with leukemia at the Ahvaz Oncology Center from ۲۰۱۶ to ۲۰۱۹. To provide a mortality prediction model, a genetic algorithm and nearest neighbor were used. A genetic approach was employed to identify the determinants of mortality, and the nearest-neighbor technique was utilized to enhance model accuracy. Ultimately, the diagnostic power of the mortality prediction model was assessed using accuracy, sensitivity, and specificity criteria. The laboratory values and variables incorporated into the genetic algorithm revealed that mechanical ventilation, hemodialysis, neutropenia, and bone marrow transplantation significantly influenced the mortality rate of patients with leukemia. The diagnostic accuracy of the genetic algorithm introduced in this study was ۷۷.۴%, with a sensitivity of ۷۸.۲% and specificity of ۸۲%. The results showed the artificial intelligence algorithm in predicting mortality in leukemia patients.

نویسندگان

Maryam Mahdavi

Student Research Committee, School of Nursing and Midwifery, Lorestan University of Medical Sciences, Khorramabad, Iran

Shiva Ariaiinezhad

Student Research Committee, School of Nursing and Midwifery, Lorestan University of Medical Sciences, Khorramabad, Iran

Parastou Kordestani

Critical care and Emergency Nursing, Faculty of Nursing & Midwifery, Lorestan University of Medical Sciences, Khorramabad, Iran

Khadijeh Heidarizadeh

Critical care and Emergency Nursing, Faculty of Nursing & Midwifery, Lorestan University of Medical Sciences, Khorramabad, Iran

Rasool Mohammadi

Nutritional Health Research Center, School of Health and Nutrition, Lorestan University of Medical Sciences, Khorramabad, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Pirracchio R, Petersen ML, Carone M, Rigon MR, Chevret S, ...
  • Soleimani M, li Imani A, Bagheri S, Jafarpour H, Tangestani ...
  • Godinjak A, Iglica A, Rama A, Tančica I, Jusufović S, ...
  • Maghsoudi B, Tabei SH, Zand F, Tabatabaee H, Akbarzadeh A. ...
  • Liu J, Cheng Q, Yang Q, Li X, Shen X, ...
  • Fooladi S, Farsi H, Mohamadzadeh S. Detection of Malignancy Degree ...
  • Hosseini M, Ramazani J. Evaluation of Acute Physiology and Chronic ...
  • Ayoubian A, Navid M, Moazam E, Hoseinpourfard M, Izadi M. ...
  • Xie J, Su B, Li C, Lin K, Li H, ...
  • Maqsood S, Badar F, Hameed A. Characteristics and outcomes of ...
  • Chen CL, Wang ST, Cheng WC, Chen CY, Chen WC, ...
  • Momeny M, Latif AM, Agha Sarram M, Hajmirzazade K, Gharravi ...
  • Asgari P, Atashi A, Meraji M, Miri M. The comparison ...
  • Setareh S, Zahiri Esfahani M, Zare Bandamiri M, Raeesi A, ...
  • Button E, Chan RJ, Chambers S, Butler J, Yates P. ...
  • Nabovati E, Azizi AA, Abbasi E, Vakili-Arki H, Zarei J, ...
  • Hosseini Teshnizi S, Tazhibi M, Tavasoli Farahi M. Comparison of ...
  • Shanbehzadeh M, Valinejadi A, Afrah R, KazemiArpanahi H, Orooji A, ...
  • نمایش کامل مراجع