Regularization properties of range restricted LSQR method for solving large-scale linear discrete ill-posed problems

سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 45

فایل این مقاله در 17 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_CMCMA-3-1_003

تاریخ نمایه سازی: 13 آبان 1404

چکیده مقاله:

The LSQR iterative method is one of the most popular methods for solving large-scale linear discrete ill-posed problem Ax=b with an error-contaminated right-hand side.In this paper, we consider the regularization properties of range restricted LSQR (RRLSQR) method. The iteration number k always acts as the regularization parameter because of the semi-convergence. In order to verify whether or not the RRLSQR method finds a ۲-norm filtering best regularization solution for severely, moderately and mildly ill-posed problems, we present the sin \Theta theorems for the ۲-norm distances between the k dimensional left and right Krylov subspaces generated by Lanczos bidiagonalization and the k dimensional dominant left and right singular subspaces of A, and estimate the distances for the three kinds problems assuming that the singular values are simple, and develop a regularized RRLSQR method for solving linear discrete ill-posed problems. Numerical experiments confirm our theoretical results and show the efficiency of the proposed method.

کلیدواژه ها:

Linear discrete ill-posed problem ، semi-convergence ، range restricted LSQR method ، regularization property

نویسندگان

Hui Zhang

Department of Basic Courses, Jiangsu Police Institute, Nanjing ۲۱۰۰۳۱, P.R. China

Hua Dai

School of Mathematics, Nanjing University of Aeronautics and Astronautics, Nanjing ۲۱۰۰۱۶, P.R. China