Thermodynamic Study of Improvements of Various Methods of Predicting Vapor Pressure of Different Materials

سال انتشار: 1405
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 22

فایل این مقاله در 27 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_PCBR-9-1_004

تاریخ نمایه سازی: 11 آبان 1404

چکیده مقاله:

The accurate prediction of vapor pressure is a cornerstone in thermodynamic mod-eling, with wide-ranging applications across chemical engineering, environmental science, and materials development. This study presents a comprehensive thermo-dynamic investigation into the enhancement of existing methods for predicting va-por pressure across a broad spectrum of chemical substances, including conven-tional organics, polymers, and emerging advanced materials such as ionic liquids and metal-organic frameworks. Current predictive models—ranging from empirical equations and group contribution methods to corresponding states theory and mo-lecular simulations—exhibit varying degrees of accuracy, generalizability, and computational demand. However, each approach is constrained by limitations such as narrow applicability, reliance on extensive experimental data, or high computa-tional costs. This research aims to bridge these gaps by integrating refined thermo-dynamic models, advanced statistical correlations, and data-driven machine learn-ing techniques to improve both the accuracy and flexibility of vapor pressure pre-dictions. The study evaluates the performance of enhanced models using extensive benchmark datasets, incorporating compounds with diverse molecular structures and thermodynamic behaviors. It explores improvements in hybrid models that couple group contribution and equations of state frameworks, and introduces un-certainty quantification through Bayesian analysis to assess predictive reliability. Results demonstrate that thermodynamically-informed, machine-learning-augmented models outperform traditional methods across a wide range of sub-stances and temperature conditions. These advancements have significant implica-tions for the design of safer, more efficient, and environmentally sustainable chemi-cal processes. The findings contribute to the evolving field of predictive thermody-namics by offering scalable, accurate, and computationally feasible tools for vapor pressure estimation in both academic and industrial contexts.

نویسندگان

Mohammad Yousefi

Department of Chemical Engineering, Arv.C., Islamic Azad University, Abadan, Iran

Nafiseh Hajiabdolah

Department of Chemical Engineering, Arv.C., Islamic Azad University, Abadan, Iran

Maysam Mehdipour Rad

Department of Chemical Engineering, Arv.C., Islamic Azad University, Abadan, Iran

Alireza Roustaei

Department of Chemical Engineering, Arv.C., Islamic Azad University, Abadan, Iran

Iman Shahriari

Department of Chemical Engineering, Arv.C., Islamic Azad University, Abadan, Iran

Mahmoud Cheraghi

Department of Chemical Engineering, Arv.C., Islamic Azad University, Abadan, Iran

Ebrahim Kanaany Pour Talabah

Department of Chemical Engineering, Arv.C., Islamic Azad University, Abadan, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Price DM. Vapor pressure determination by thermogravimetry. Thermochimica acta. ۲۰۰۱, ...
  • Wang LH, Hsieh CM, Lin ST. Improved prediction of vapor ...
  • De Hemptinne JC, Kontogeorgis GM, Dohrn R, Economou IG, Ten ...
  • Omogbehin, S., Olasehinde, F., Adebayo, M., Jabar, M., Synthesis and ...
  • Sadr, M.B., Analysis of spatial criteria of industries in the ...
  • Richter M, McLinden MO, Lemmon EW. Thermodynamic Properties of ۲, ...
  • Hoffmann, M., Hasse, H., Jirasek, F., Grappa—a hybrid graph neural ...
  • Szczotok AM, Kjøniksen AL, Rodriguez JF, Carmona M. The accurate ...
  • Klamt, A., Eckert, F., Arlt, W., COSMO-RS: An alternative to ...
  • Lin, Y.-H., Liang, H.-H., Lin, S.-T., Li, Y.-P., Advancing vapor ...
  • Marimuthu, A.N., McGuire, B.A., Machine learning pipeline for molecular property ...
  • Santana, V.V., Rebello, C.M., Queiroz, L.P., Ribeiro, A.M., Shardt, N., ...
  • Hogge, J.W., Giles, N.F., Knotts, T.A., Rowley, R.L., Wilding, W.V., ...
  • Lin, Y.-H., Liang, H.-H., Lin, S.-T., Li, Y.-P., Advancing vapor ...
  • Krüger, M., Galeazzo, T., Eremets, I., Schmidt, B., Pöschl, U., ...
  • The goals of creating rural industries with the view of environmental protection [مقاله ژورنالی]
  • Exergy and the fusion and fission nuclear reactions in nuclear powerplants [مقاله ژورنالی]
  • Barley, M. H., McFiggans, G., The critical assessment of vapour ...
  • Compernolle, S., EVAPORATION: a new vapour pressure estimation method for ...
  • Hogge, J. W., Wilding, W. V., New vapor-pressure prediction with ...
  • Joback, K. G., & Reid, R. C., Estimation of pure-component ...
  • Krieger, U. K., A reference data set for validating vapor ...
  • Lee, B. I., & Kesler, M. G., A generalized thermodynamic ...
  • Myrdal, P. B., & Yalkowsky, S. H., Estimating pure component ...
  • Nannoolal, Y., Rarey, J., & Ramjugernath, D., Estimation of the ...
  • Nannoolal, Y., Rarey, J., Cordes, W., Ramjugernath, D., Estimation of ...
  • O'Meara, S., Booth, A. M., Barley, M. H., Topping, D., ...
  • Stahn, M., Grimme, S., Salthammer, T., Hohm, U., Palm, W.-U., ...
  • نمایش کامل مراجع