Upper Bounds of Stock Portfolio Investment Risk Using Value at Risk (Case Study: Indonesian Blue-Chip Stocks in ۲۰۲۲)
سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 22
فایل این مقاله در 25 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IER-29-3_002
تاریخ نمایه سازی: 11 آبان 1404
چکیده مقاله:
In recent years, stocks become the most preferred asset by Indonesian investors. Besides offering large profits, stock investment also has a risk factor that can occur at any time. One way to minimize risk is to form a stock portfolio. This paper aims to measure the upper bounds of the portfolio loss risk formed by several single assets that are mutually dependent. The upper bound value is chosen because the exact value of portfolio loss risk is difficult to obtained by Convolution or Panjer Recursion methods. The main analysis of this research is formed the upper bounds of stock portfolio investment risk using VaR with Cornish Fisher Expansion aproach by utilized comonotonicity and convex order properties. The portofolio contains of ۳ single asset (ARTO.JK, ITMG.JK, and MIKA.JK) which collected from IDX Indonesia from ۱۰/۲۵/۲۱ to ۱۰/۲۱/۲۲. The novelty of this research is combined comonotonicity and convex order properties with VaR-CFE to get upper bounds of portolio risk predicition. The result show that at ۹۵% significance level and ۱-day holding period, the upper bounds of VaR-CFE prediction for the portfolio is -۰.۱۳۹۴. The social impact of this research can be a benchmark to get accurate risk prediction of their portfolio asset.
کلیدواژه ها:
نویسندگان
Hersugondo Hersugondo
Department of Management, Faculty of Economics and Busniness, Diponegoro University, Semarang, Indonesia
Imam Ghozali
Department of Accounting, Faculty of Economics and Business, Diponegoro University, Semarang, Indonesia
Mohamad Nasir
Department of Accounting, Faculty of Economic and Business, Diponegoro University, Semarang, Indonesia.
Trimono Trimono
Data Science Study Program, Faculty of Computer Science, Pembangunan Nasional Veteran Jawa Timur University, Surabaya, Indonesia.
Idris Idris
Department of Management, Faculty of Economics and Business, Diponegoro University, Semarang, Indonesia
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :