Integrating Density Functional Theory, Finite Element Analysis & Machine Learning in the Study of Mechano-Thermal Properties of a Triclinic Pentafluorophenyl-Urea Derivative
محل انتشار: نشریه پیشرفته شیمی، دوره: 9، شماره: 3
سال انتشار:  1405
نوع سند:  مقاله ژورنالی
زبان:  انگلیسی
مشاهده:  17
فایل این مقاله در 19 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
 - من نویسنده این مقاله هستم
 
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_AJCS-9-3_009
تاریخ نمایه سازی: 11 آبان 1404
چکیده مقاله:
The mechanical behavior of organic molecular crystals is a critical factor in their applicability for structural and functional materials. In this study, a first-principles computational framework is presented for predicting the thermo-mechanical properties of PDPF (C۱۹H۷F۱۰N۵O۲), integrating density functional theory (DFT), finite element analysis (FEA) for elasticity simulations, and machine learning (ML) regression models. A major challenge in using commercial Finite Element Analysis (FEA) software for organic molecular crystals is the lack of direct compatibility with Crystallographic Information Files (CIF). Standard FEA tools rely on predefined material databases and user-defined stress-strain models, making it difficult-or even impossible-to directly simu-late a molecular crystal structure from its CIF file. To address this, a CIF → DFT → Python-based FEA workflow was developed, where DFT-derived elastic stiffness tensors (Cij) were used to define the material properties in a custom Python elasticity solver. This method eliminates the need for meshing and pro-vides a self-consistent approach for simulating stress-strain behavior under uniaxial, shear, biaxial, triaxial, and hydrostatic loading conditions. The results reveal that PDPF exhibits high tensile strength (۸.۰۵ GPa) with brittle fracture, enhanced failure resistance in biaxial stress (۹.۵۷ GPa), and bulk collapse at -۱۸.۸۳ GPa under extreme compression. Furthermore, Basquin’s Low was implemented for fatigue modeling and Norton’s Low for creep prediction, showing that PDPF maintains high endurance under cyclic stress but exhibits gradual softening under long-term deformation. This study provides a computationally self-consistent framework for predicting mechanical behavior in molecular crystals, while also identifying the limitations of molecular descriptors in mechanical modeling. Future work will focus on incorporating molecular dynamics (MD) simulations, defect modeling, and advanced ML architectures to im-prove predictive accuracy.
کلیدواژه ها:
نویسندگان
Venkata Shivakumar Remella
Department of Chemistry, Vel Tech Rangarajan Dr. Sagunthala R & D Institute of Science and Technology, Chennai, India
Haridharan Neelamegan
Department of Chemistry, Vel Tech Rangarajan Dr. Sagunthala R & D Institute of Science and Technology, Chennai, India
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :